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Abstract

One of the goals for developing a Probabilistic Risk Assessment (PRA) is to estimate

overall system risk by placing different types of risk into categories.  However, for large complex

systems it becomes difficult to get an exact answer due to the vast number of combinations that

exist.  Therefore, many conservative assumptions and/or approaches are used to solve the

problem.  Moreover, these approaches have limitations for most aerospace applications.  The

method described herein provides a solution that reduces the number of assumptions that have

to be made and provides a more correct answer. This is done by introducing two new concepts

called Pairwise Concatenation and Trumping.

Introduction

Probabilistic Risk Assessment (PRA) techniques have been used in the nuclear industry

for many years and have been gaining popularity in the aerospace industry since the Challenger

failure in 1986. Daniel S. Goldin, administrator of the National Aeronautics and Space

Administration (NASA) from 1992 to 2001, mandated the use of formal risk management

processes and technologies, such as PRA, in 2000 [1].

The objective of PRA is to support the decision-making process through identifying the

contribution of causal factors to overall system risk.  As part of the PRA process, the outcomes

from various scenarios resulting from a sequence of events are categorized into end states.

However, calculation of failure probabilities becomes increasingly difficult as the number of

outcomes and the number of event trees increase.  Numerical solutions can be obtained

efficiently only by making a number of conservative assumptions and using approximation

techniques. For modeling large complex systems such as engines, the limitations of these

methods can lead to problems. Realistic estimates of end-state failure probabilities cannot be

obtained.
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A new methodology was developed to provide better estimates of end state probabilities

while making fewer assumptions.  This is achieved by introducing two new concepts called

Pairwise Concatenation and Trumping.

Background

There are several ways to do a PRA. The most popular and perhaps the easiest method

to understand is the small event tree approach (Refer to Figure 1 for the following discussion).

Event trees consist of an initiating event (IE), pivotal events (PE), and end states (ES). Initiating

events are the events that initiate a scenario, such as “Turbine Blade Fracture.”   End states are

the outcomes of the scenario put in motion by the IE, such as “Loss of Crew/Vehicle.”  Pivotal

events are binary events that either occur or do not occur and in doing so create combinations

that form a path (sequence) from the IE to ES.  Probabilities are computed for each ES within the

event trees and compiled to get an overall estimate of the probability of occurrence for each ES.

For traditional widely used approaches, flaws exist in the method used to assign overall

ES probabilities.  A popular method is the use of minimal cutsets (mincuts) [2] to compute ES

probabilities and simply sum the probabilities for like ES across multiple trees to calculate the

overall ES probability. This creates two problems: 1) complement probabilities are ignored and 2)

the practice of summing ES probabilities leads to inflated results.  Since failure probabilities used

in PRAs are often small, summing the ES probabilities to arrive at an overall ES probability is

typically believed to have a negligible effect on the end result. Since the mincut analysis

methodology is based on the small probability assumption described above, it breaks down when

large probabilities (e.g., p > 0.1) are used and/or when many event trees are modeled.  Example

2 demonstrates a small event tree PRA solved with the mincut method.
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Example 1

Problem

Suppose a three-event tree PRA was performed as shown in Figure 1.  Let the probability for the IE1 = 0.2,
IE2 = 0.6, and IE3 = 0.4. Let the mean failure probabilities for A, B, C, D, E, and F be 0.3, 0.2, 0.8, 0.5,
0.6. 0.3, respectively.  Using the mincut method show a) the formula and value for each sequence, b) the
formula and value for each end state (ES) within the ET, and c) the formula and value for the each overall
end state.

Solution

a) The ES probabilities for each sequence in Event Tree 1 (ET1), Event Tree 2 (ET2), and Event Tree 3
(ET3) are computed using the mincut method as follows:

Sequence Endstate Mincut Formula Mincut Value
1 MS N/A
2 SD IE1*B 0.04
3 SD IE1*A 0.06
4 CT IE1*A*B 0.012
1 MS N/A
2 SD IE2*C 0.48
3 CT IE2*C*D 0.24
1 MS N/A
2 SD IE3*E 0.24
3 CT IE3*E*F 0.072

ET
1

ET
2

ET
3

b) The formula for each ES within a tree follows the sequence unless more than one sequence leads to the
same ES, such as in ET1. The formula for the SD ES for ET1 is therefore computed as follows:

SDET1 = IE1*[1-(1-B)*(1-A)] = 0.2*[1-(1-.3)*(1-.2) = 0.088

c) To calculate the overall ES probability, simply sum the ES probabilities from each tree.  This gives:

SD = IE1*[1-(1-B)*(1-A)] + IE2*C + IE3*E = 0.088 + 0.48 + 0.24 = 0.808

CT = IE1*A*B+IE2*C*D + IE3*E*F = 0.012 + 0.24 + 0.072 = 0.324.

Observations
No probabilities are calculated for sequence 1 of each tree, since sequence 1 does not have cutsets.
Complement probabilities are also ignored in the calculation of the sequences.  Finally, if large
probabilities are used or if many ETs are used it is possible to get probabilities greater than one!



5

A more correct method is to do the calculations using all possible combinations of all the

end states within the event trees contained in the PRA.  However, two obstacles are encountered

when using this exhaustive method.  First, the number of combinations in a typical PRA usually

exceeds the power of most computers or would take an inordinate amount of time. Secondly,

another problem exists where sharing of the probability space for a particular combination occurs.

In aerospace (more specifically space) applications, the only available estimates of event

probabilities are often conservative due to lack of information. However, reliability goals are

typically minute, e.g. 0.9995 or 0.999995.  The tendency toward conservatism in combination with

the conventional analysis method hinders efforts to provide realistic and representative estimates

of the overall probabilities.   Since efforts to remove conservatism are largely contingent on the

quantity and quality of data available, improving the computational methods will improve the

quality of the final estimates. Therefore, an alternative algorithm must be used.

The first obstacle is the sheer magnitude of considering all combinations.  For a handful

of event trees, this poses no problem because the number of combinations is relatively small.  In

general, the number of combinations can be calculated as ( ) ETN
ESC NN = , where NC represents

the total number of combinations, NES, the total number of end states within the PRA, and NET,

the number of event trees.  Tables 1 and 2 show all possible combinations produced for

examples with two and three event trees with three end states.  The number of combinations is

generalized for n event trees each with three end states in Table 3.
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Table 1.  All possible combinations for 2 Event Trees with 3 End states.

Combination Event Tree 1 Event Tree 2
1 Mission Success Mission Success
2 Mission Success Shutdown
3 Mission Success Catastrophic
4 Shutdown Mission Success
5 Shutdown Shutdown
6 Shutdown Catastrophic
7 Catastrophic Mission Success
8 Catastrophic Shutdown
9 Catastrophic Catastrophic

Table 2.  All possible combinations for 3 Event Trees with 3 End states.

Combination Event Tree 1 Event Tree 2 Event Tree 3
1 Mission Success Mission Success Mission Success
2 Mission Success Mission Success Shutdown
3 Mission Success Mission Success Catastrophic
4 Mission Success Shutdown Mission Success
5 Mission Success Shutdown Shutdown
6 Mission Success Shutdown Catastrophic
7 Mission Success Catastrophic Mission Success
8 Mission Success Catastrophic Shutdown
9 Mission Success Catastrophic Catastrophic

10 Shutdown Mission Success Mission Success
11 Shutdown Mission Success Shutdown
12 Shutdown Mission Success Catastrophic
13 Shutdown Shutdown Mission Success
14 Shutdown Shutdown Shutdown
15 Shutdown Shutdown Catastrophic
16 Shutdown Catastrophic Mission Success
17 Shutdown Catastrophic Shutdown
18 Shutdown Catastrophic Catastrophic
19 Catastrophic Mission Success Mission Success
20 Catastrophic Mission Success Shutdown
21 Catastrophic Mission Success Catastrophic
22 Catastrophic Shutdown Mission Success
23 Catastrophic Shutdown Shutdown
24 Catastrophic Shutdown Catastrophic
25 Catastrophic Catastrophic Mission Success
26 Catastrophic Catastrophic Shutdown
27 Catastrophic Catastrophic Catastrophic
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Table 3.  Pattern of combinations for a 3 End state PRA.

1 11 21 - 11 (31 - 21) - (21 - 11)

2 12 22 - 12 (32 - 22) - (22 - 12)

3 13 23 - 13 (33 - 23) - (23 - 13)

n 1n 2n - 1n (3n - 2n) - (2n - 1n)

21 - 11

22 - 12

23 - 13

2n - 1n

Event
Trees

Mission
Success Shutdown Catastrophic Catastrophic/Shutdown Total

31

32

33

3n

Calculating probabilities resulting from this vast number of combinations can exceed the

power of the typical computer.  For instance, if one models three end states with 500 event trees,

the total number of combinations would be 3500 = 3.636 x 10238. Not only does the magnitude of

combinations pose computational problems, but also the basic definition of probability states that

the sum of all probabilities must equal one.  The sum of all probabilities, one, must be divided into

the total number of combinations.  This division of the total probability may result in the truncation

of probabilities at the combination level.  Thus when the combinations are summed it leads to a

value greater than one.  Along with the necessary conservatism associated with estimates, a

breakdown of this basic rule cannot be avoided.

New Method

An algorithm was developed that calculates overall end state probabilities without

requiring that all possible combinations be evaluated at once.  Some changes must first be made

to the conventional framework as described above, through defining a global initiating event and

taking the complement probabilities into account when computing sequence probabilities.  Then,

once each event tree’s total probability sums to 1.0, exact minimum and maximum bounds for the

overall end state probabilities can be computed through the use of Trumping and Pairwise

Concatenation techniques.
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Global IE and Complement Probabilities

In order to use the new technique, two modifications must be made to the event trees of

the PRA.  First, a global initiating event must be added to each event tree with an assigned

probability of 1, as shown in Figure 2. Intuitively, this makes sense because the probability of

occurrence for an initiating event is contingent upon the event having the opportunity to occur.

For instance, in a dynamic system such as an engine, the system can fail only after it has been

initiated.  Examples of global initiating events include Ignition Command Given, Switch Toggled,

Trigger Pulled, etc.  This global initiating event serves to tie the event trees together into an

integrated group.

The second part of the modification is to solve the sequences within each tree, correctly

accounting for the complement probabilities of the top events.  This method is sometimes referred

to as “split-fraction” quantification of sequences [3].   Once the two modifications are performed

as described above, the end state probabilities for each event tree will sum to one.  Use of the

split-fraction method in combination with the definition of a global initiating event allows all

probability for the end states contained in an event tree to be taken into account.  Example 2

shows how sequence probabilities are calculated after applying these modifications to Example 1.
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Example 2

Problem

Using the values from Example 1 and the modified event trees shown in Figure 2, show a) the formula and value for each
sequence and b) the formula and value for each end state within the ET using the “split fractions” method.

Solution

a) The end state probabilities for each sequence in Event Tree 1 (ET1), Event Tree 2 (ET2), and Event Tree (ET3) are
computed using the split fractions method as follows:

Sequence Endstate Split Fractions Formula Split Fractions Value
1 MS 1-IE1 0.8
2 MS IE1*(1-A)*(1-B) 0.112
3 SD IE1*(1-A)*B 0.028
4 SD IE1*A*(1-B) 0.048
5 CT IE1*A*B 0.012
1 MS 1-IE2 0.4
2 MS IE2*(1-C) 0.12
3 SD IE2*C*(1-D) 0.24
4 CT IE2*C*D 0.24
1 MS 1-IE3 0.6
2 MS IE3*(1-E) 0.16
3 SD IE3*E*(1-F) 0.168
4 CT IE3*E*F 0.072

ET
1

ET
2

ET
3

b) Since the end states are considered independent and mutually exclusive,  calculations of the end state probabilities
within each event tree are done using simple addition, as shown.

Event Tree 1

MSET1 = [1-IE1] + [IE1*(1-A)*(1-B)] = 0.8 + 0.112 = 0.912

SD ET1 = [IE1*(1-A)*B] + [IE1*A*(1-B)] = 0.028 + 0.048 = 0.076

CT ET1 = IE1*A*B = 0.012

Event Tree 2

MSET2 = [1-IE2] + [IE2*(1-C)] = 0.4 + 0.12 = 0.52

SD ET2 = IE2*C*(1-D) = 0.24

CT ET2 = IE2*C*D = 0.24

Event Tree 3

MSET3 = [1-IE3] + [IE3*(1-E)] = 0.6 + 0.16 = 0.76

SD ET3 = IE3*E*(1-F) = 0.168

CT ET3 = IE3*E*F = 0.072
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Trumping

Once the sequence probabilities within each event tree sum to one, the overall end state

probabilities can be computed.  Two items, which impact the end result, must now be considered.

1. How each particular combination of end states is treated in the calculations.

2. The probability that a particular combination of end states occurs.

As discussed earlier, all possible combinations of end states across the event trees must be

considered in estimating the overall end state probabilities because of an inherent precedence

ordering within the PRA.   For example, the first combination represented in Table 2 occurs when

none of the initiating events modeled occur: i.e. ET1, ET2, and ET3 all result in an outcome of

mission success.  In the second combination considered ET1 and ET2 both result in mission

success while ET3 results in a shutdown.  This combination would result in a shutdown.

Problems arise when dealing with combinations that contain both shutdowns (SD) and

catastrophic (CT), where no clear hierarchical precedence relationship is exhibited.  Because of

the physical nature of the system, a shutdown and catastrophic failure cannot occur

simultaneously.  These are mutually exclusive events and the occurrence of one precludes the

occurrence of the other.  Neither of these two end states dominates the other, as both do when

interacting with the mission success (MS) end state.  The method used to assess the behavior of

the system overall is called “trumping”.  This rule defines the system-level end state on an event

tree basis.

To better illustrate the motivation behind trumping, first consider a simple two-event tree

PRA with three end states. In this simple example, only one combination yields mission success;

that is, both trees must have MS as the outcome (See Figure 3).  This is because mission

success is universally passive.  This simply means that an outcome of mission success for any

event tree is dominated absolutely by the shutdown or catastrophic failure of another event tree.

For example, the outcome for a ten-event tree PRA would be SD if nine trees result in MS and

one results in SD. This poses no problem due to the relationship between MS and SD.  However,

when a combination of end states that are not passive in regards to each other is produced, a
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choice between them must be made.  In Figure 3, a combination exists where ET1 produces

shutdown while ET2 produces catastrophic and vice versa (highlighted in yellow).  In these cases

either shutdown or catastrophic must occur prior to the other; they cannot both occur.  Therefore,

the idea of trumping was used to identify which end state takes precedence in these situations.

The conservative approach allows catastrophic failure to “trump” shutdown, resulting in a worst

case upper bound on the calculated end state probability.  A lower bound can be calculated

similarly by allowing shutdown to trump catastrophic failure.   This trumping technique is not a

function of the relative importance of end states; it is merely a device for bounding the probability.

Mission Success Shutdown Catastrophic

Mission Success Mission Success Shutdown Catastrophic

Shutdown Shutdown Shutdown Catastrophic/Shutdown

Catastrophic Catastrophic Catastrophic/Shutdown Catastrophic

Event Tree 1

Event Tree 2

Figure 3.  Combination Matrix for two Event Trees with three End states.

The next step is to compute the overall end state probabilities for the PRA after using the

selected trumping rule to determine the overall end states for all possible combinations.  The

exhaustive combinatorial approach is first shown to demonstrate the method.

In order to demonstrate the exhaustive combinatorial approach Table 4 is generated

using the values obtained for the end states in Example 2.  The sum of all combination

probabilities should be one, as shown in Table 4.  Overall end-state probabilities can be

calculated by summing the combination probabilities associated with each particular end state.

For the example, the overall end state probabilities allowing catastrophic to trump are 0.360,

0.336, and 0.303 for MS, SD, and CT, respectively.  If Table 4 were setup to allow shutdown to
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trump, the corresponding overall end state probabilities are 0.360, 0.416, and 0.224.  Comparing

these results to the values obtained in Example 1 using the Mincut method, one can see how

much more conservative the Mincut method is.

Table 4.  End state and probability determination

END STATE Probability
MS 0.91 MS 0.52 MS 0.76 MS 0.360
MS 0.91 MS 0.52 SD 0.17 SD 0.080
MS 0.91 MS 0.52 CT 0.07 CT 0.034
MS 0.91 SD 0.24 MS 0.76 SD 0.166
MS 0.91 SD 0.24 SD 0.17 SD 0.037
MS 0.91 SD 0.24 CT 0.07 CT 0.016
MS 0.91 CT 0.24 MS 0.76 CT 0.166
MS 0.91 CT 0.24 SD 0.17 CT 0.037
MS 0.91 CT 0.24 CT 0.07 CT 0.016
SD 0.08 MS 0.52 MS 0.76 SD 0.030
SD 0.08 MS 0.52 SD 0.17 SD 0.007
SD 0.08 MS 0.52 CT 0.07 CT 0.003
SD 0.08 SD 0.24 MS 0.76 SD 0.014
SD 0.08 SD 0.24 SD 0.17 SD 0.003
SD 0.08 SD 0.24 CT 0.07 CT 0.001
SD 0.08 CT 0.24 MS 0.76 CT 0.014
SD 0.08 CT 0.24 SD 0.17 CT 0.003
SD 0.08 CT 0.24 CT 0.07 CT 0.001
CT 0.01 MS 0.52 MS 0.76 CT 0.005
CT 0.01 MS 0.52 SD 0.17 CT 0.001
CT 0.01 MS 0.52 CT 0.07 CT 0.000
CT 0.01 SD 0.24 MS 0.76 CT 0.002
CT 0.01 SD 0.24 SD 0.17 CT 0.000
CT 0.01 SD 0.24 CT 0.07 CT 0.000
CT 0.01 CT 0.24 MS 0.76 CT 0.002
CT 0.01 CT 0.24 SD 0.17 CT 0.000
CT 0.01 CT 0.24 CT 0.07 CT 0.000

Total 1.000

ET1 ET2 ET3

Pairwise Concatenation

The exhaustive combinatorial approach may be used when a small number of event trees

are being modeled.  However, this approach is typically not feasible because of the number of

combinations and the use of small probabilities.  An alternative method, Pairwise Concatenation,

was developed to streamline the computational aspect of this problem.

The new process for computing overall end state probabilities is conceptually simple.

Two event trees are solved for the pairwise end state probabilities, creating a new event tree

called the Transitional Event Tree (TET).  This first TET is then combined with the third ET to
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obtain another TET; the process is then repeated until all the trees are combined and a single

TET has resulted.  This last TET is the final result; results are mathematically equivalent to those

obtained through the exhaustive combinatorial approach.  This method also drastically reduces

the number of operations necessary for computation.  A graphical representation of Pairwise

Concatenation is shown in Figures 4 and 5.  Example 3 computes the overall end state

probabilities using the new methodology.

ET1

ET2

ET3

ET4

TET1

TET2

TET3

Step 1 Step 2 Step 3 Answer

Figure 4.  The Pairwise Concatenation Process.
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Figure 5.  The Pairwise Concatenation Process with Trumping of End states.

Example 3

Problem
Using the modified event trees shown in Figure 2 and the values computed for the end states in part B of Example 2,
solve for the overall endstates using pairwise concatenation and trumping, where Shutdown (SD) trumps Catastrophic
(CT) and vice-versa.

Solution
As illustrated below path 1 lets SD trump CT and path two lets CT trump SD.  ET1 combines with ET2 to yield TET1.
TET1 then combines with ET3 and they yield TET2.  Path one is anti-conservative and path two is the conservative path.
The overall end states are shown as the combination of the two paths.

TET1 TET2
MS = 0.520 SD = 0.240 CT = 0.240 MS = 0.760 SD = 0.168 CT = 0.072

MS = 0.912 MS = 0.474 SD = 0.219 CT = 0.219 MS = 0.474 MS = 0.474 MS = 0.360 SD = 0.080 CT = 0.034 MS = 0.360
SD = 0.076 SD = 0.040 SD = 0.018 SD = 0.018 SD = 0.298 SD = 0.298 SD = 0.226 SD = 0.050 SD = 0.021 SD = 0.415
CT = 0.012 CT = 0.006 SD = 0.003 CT = 0.003 CT = 0.228 CT = 0.228 CT = 0.173 SD = 0.038 CT = 0.016 CT = 0.223

Overall Endstates

MS = 0.360
SD = 0.415, 0.338
CT = 0.223, 0.303

TET1 TET2
MS = 0.520 SD = 0.240 CT = 0.240 MS = 0.760 SD = 0.168 CT = 0.072

MS = 0.912 MS = 0.474 SD = 0.219 CT = 0.219 MS = 0.474 MS = 0.474 MS = 0.360 SD = 0.080 CT = 0.034 MS = 0.360
SD = 0.076 SD = 0.040 SD = 0.018 CT = 0.018 SD = 0.277 SD = 0.277 SD = 0.211 SD = 0.047 CT = 0.020 SD = 0.338
CT = 0.012 CT = 0.006 CT = 0.003 CT = 0.003 CT = 0.249 CT = 0.249 CT = 0.189 CT = 0.042 CT = 0.018 CT = 0.303

2

1

ET2 ET3

TE
T1

ET
1

ET2

ET
1

ET3

TE
T1

Observations
The sums of all the combinations equal one.  There is only one combination that leads to Mission Success.  The true
answer for SD and CT lies between the anti-conservative/conservative range.  In a real PRA, the probabilities will most
likely be small thus the range would not be as large as shown here.
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Summary

The new technique described here for solving overall end state probabilities may be

summarized in three steps:  1) Add a global initiating event to each event tree, 2) Solve for the

end states within each tree correctly using complement probabilities (split-fractions method), and

3) use pairwise concatenation in conjunction with trumping to solve the combinations and arrive

at the final estimates of overall end state probabilities. This proposed method for calculating

overall end state probabilities offers a viable alternative to the current commonly used approach.

For PRAs with a potentially high number of end state categories and large numbers of event

trees,  this approach offers a computationally succinct and pragmatic way of obtaining more

precise estimates of failure probabilities for the outcomes of interest. Performing pairwise

concatenation in conjunction with trumping yields identical results as using the exhaustive

combinatorial approach with trumping.
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