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Introduction 
 
In the discussion that follows, we assume that gamma rays are the radiation of interest. 
The principles discussed also apply to monoenergetic x rays; in many cases of concern in 
x-ray shielding, however, the photons are produced in the bremsstrahlung process that 
yields a wide and continuous distribution of photon energies. Specialized shielding 
approaches have been developed to carry out shielding estimations for such x rays (e.g., 
NCRP 2003, NCRP 2004), and these will not be explicitly discussed.  
 
Our emphasis here will be on the development of an analytical expression based on what 
is often referred to as the point kernel method. We will obtain an expression for the 
shielded dose rate from a point isotropic source and show how that can be used to obtain 
deterministic solutions for other source geometries. For fixed input parameter values, 
deterministic methods always produce the same answer. Deterministic solutions are, by 
their nature, single-valued, fixed solutions, not subject to random kinds of fluctuations 
associated with other approaches (which are usually being called stochastic or 
probabilistic methods).  
 
In the category of probabilistic methods are the well-known and very popular Monte Carlo 
techniques embodied in computer codes such as MCNP (Monte Carlo N-Particle transport 
code) and EGS4 (Electron Gamma Shower code); both codes are available from the 
Radiation Safety Information Computational Center at Oak Ridge. In Monte Carlo 
simulations of shielding problems, the code tracks the fates of individual photons as they 
move through the shield; decisions as to how far a photon travels before interacting, what 
type of interaction occurs, what direction is taken by scattered photons, etc., are all made 
on a probabilistic basis in which random numbers are selected and associated with 
specific probabilities that are used to specify the decision outcome.  
 
Thus, if the fates of two identical photons are followed, we would expect them to be 
different much of the time, and it is only by investigating enough photons that we might 
expect the overall results to be representative of reality—e.g., that the determined dose at 
a receptor location will be correct. Two individuals running the same Monte Carlo code to 
solve the same problem will not necessarily arrive at exactly the same answers.  
 
Deterministic methods have the advantage that the computations are very fast and 
relatively easy to carry out. Some disadvantages are that they are not very useful for 
complex source and/or shield geometries, dispersed energy sources, inhomogeneous 
sources and/or shields, laminated shields, and streaming-type calculations in which one 
might be concerned about the leakage of radiation through a shield penetration such as a 
conduit. Monte Carlo codes are amenable to these more complex shielding problems and 
have become more and more popular as high-speed computing has become available to 
so many people. In general, however, they do require considerably more expertise and 
training to use and are often much slower in reaching a solution than are the deterministic 
methods. 
 

http://www-rsicc.ornl.gov/


Photon interactions and secondary radiations 
 
When gamma radiation is incident on a finite thickness of material, there exists some 
probability that the radiation will interact in the material and be attenuated. In some 
instances a photon may interact by the photoelectric effect, in which case the photon 
disappears after transferring all of its energy to a bound electron, which gets ejected from 
the atom. When the vacancy left in the shell by the removed electron gets filled by an 
electron dropping into it from a higher energy level, the difference in energy between the 
two transition states may appear as a fluorescent photon. These photons are 
characteristically low in energy, but some may be capable of reaching the dose point 
inside or outside the shielding material. The photoelectric process is favored for low-
energy photons interacting in a high atomic number (Z) material.  
 
At moderate and higher energies another process, called Compton scattering, prevails; in 
this process only a portion of the photon energy is transferred to an electron, and a 
scattered photon moves away from the interaction site, often in a direction different from 
that of the original photon. This scattered photon may find its way to a dose point of 
interest inside or outside the attenuating material.  
 
At energies exceeding 1.022 MeV, especially in higher-Z materials, the pair production 
interaction process may occur. In this event the photon interacts in the Coulomb field of the 
nucleus, with all of its energy being transformed into mass in the form of a conventional 
electron and a positively charged electron (positron). Any original photon energy beyond 
the 1.022 MeV required to generate the mass associated with the electron-positron pair 
will appear as kinetic energy of the pair. After the positron has dissipated its kinetic energy 
it will disappear in an annihilation event with a conventional electron, in the process 
producing two 0.511 MeV annihilation photons that move apart in opposite directions. 
Occasionally, the positron may annihilate during its flight, and in this case whatever kinetic 
energy it has will be transferred to the annihilation photons, one or both of which may now 
have energy greater than 0.511 MeV. In this instance the annihilation photons do not 
expectedly move in opposite directions. In any case, annihilation photons may also find 
their way to the dose point. Pair production events may also occur in the Coulomb field of 
an electron, but the incident photon energy must exceed 2.044 MeV for this to occur.  
 
Thus, any of the common gamma interaction processes may result in secondary photons 
that have a finite probability of reaching the dose point. The extent to which such 
secondary photons add to the fluence or dose at the dose point is usually described 
through the use of an appropriate buildup factor.  
 
Buildup factors may refer to various quantities of interest, such as photon fluence, photon 
energy fluence, exposure, or dose, and the values among all are somewhat different. For 
most of our discussion here we shall assume that the dose or exposure buildup factor is of 
interest. Much of the available buildup data relates to determination of exposure or kerma 
in a small air volume envisioned to be located within the shielding medium of interest. 
These data are also suitable for evaluation of dose to water or other low-Z material of 
interest.  
 



The dose buildup factor is a dimensionless quantity that represents the ratio of total dose 
(including the dose from secondary photons) at the dose point to primary photon dose at 
the same point. The primary photon dose naturally comes from original photons that have 
penetrated the shielding material without interacting. Magnitudes of buildup factors vary 
widely, ranging from a minimum of 1.0 to very large values, depending on source and 
shield characteristics. 
 
Good geometry shielding situation 
 
When a narrow parallel beam of photons passes through a relatively thin shield, and if the 
dose point is many beam diameters away from the exit surface of the shield, we have a 
situation referred to in photon shielding as good geometry. This means, simply, that 
virtually all of the photons arriving at the dose point will be primary photons, and the dose, 
D, or dose rate, at a point of interest outside the shield, is related to the unshielded dose, 
D0, or dose rate, at the point by 
 

xeDD μ−= 0  (1), 
 
where : is the linear attenuation coefficient for the photons of the energy of interest in the 
shield material, and x is the shield linear thickness. Values of : are available in a variety of 
sources, one convenient one being the National Institute of Standards and Technology 
(NIST). The values at the NIST Web site are actually mass attenuation coefficients, and 
the values must be multiplied by the shield material mass density to obtain the respective 
linear attenuation coefficients.  
 
Point isotropic source 
 
Probably the most popular source geometry involved in many calculations is the point 
isotropic source. While no real source is a true point, many sources are sufficiently small in 
dimensions that they can be treated mathematically as point sources. In practice, if the 
distance from source to dose point exceeds about three times the maximum source 
dimension, and self-attenuation within the source volume is not a concern, the errors 
resulting from treating the source as a point will not exceed a few percent. The assumption 
that the source is isotropic means that radiation of concern is emitted uniformly in all 
directions throughout a 4B geometry. We shall define such a source of monoenergetic 
gamma radiation that emits S gamma rays per second and that is situated at a distance r 
(cm) from the dose point. Further, we shall assume a shield of thickness T (cm) through 
which the gamma radiation passes before reaching the dose point (see sketch below): 
 
      Point isotropic source shielding configuration 
      
      T   
                            
 
                                 Source                     Dose point  
             Shield 
           r 
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Unshielded dose rate 
 
The unshielded dose rate at the dose point is given by 
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where E is the photon energy, MeV, 
 :en/D is the mass energy absorption coefficient for the material at the dose 

point, cm2 g-1 (values also available at NIST), and 
 k is a collective constant to convert energy fluence rate to dose rate; if the 

dose rate is in gray/hour, k will have a value of 5.76 x 10-7. 
  
Shielded primary photon dose rate 

 
The primary photon dose rate is attenuated exponentially, and the dose rate from primary 
photons, taking account of the shield, is given by 
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where : is the linear attenuation coefficient for the photons in the shield material. This 
expression does not account for the buildup of secondary radiation and will generally 
underestimate the true dose rate, especially for thick shields and when the dose point is 
close to the shield surface.  
 
 Shielded dose rate accounting for buildup 
 
The added effect of the buildup is taken into account by incorporating a point isotropic 
source dose buildup factor, B, into equation 3: 
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The magnitude of the buildup factor depends on the photon energy, the shield material and 
thickness, the source and shield geometry, and the distance from the shield surface to the 
dose point. In most cases, dose buildup factors for point isotropic sources have been 
determined under the assumption that both the source and the dose point reside within an 
infinite volume of the shield material. As a consequence, shielded doses evaluated using 
such buildup factors tend to be conservative for most practical situations in which the dose 
point is outside the shield and not subject to backscattering from shield material behind the 
dose point.  
 

http://www.physics.nist.gov/PhysRefData/XrayMassCoef/cover.html


Tabulated values of buildup factors for point isotropic dose may be found in a number of 
sources (e.g., Bureau of Radiological Health 1970, Shultis & Faw 1996). Such values are 
arranged according to shield material, photon energy, and shield thickness, usually 
expressed as the product :T, which represents the number of photon mean free paths 
represented by the shield thickness. Such tabulated values are useful, especially if one 
knows the shield thickness and wants to determine the dose rate. When one wishes to 
determine the shield thickness to yield a specific dose rate, equation 4 cannot be solved 
explicitly for T because the value of B depends on T. Solutions can be obtained by making 
educated guesses for the value of T, looking up the corresponding values of B, and solving 
for the dose rates; results can be plotted, and the correct value of T determined for the 
desired value of dose rate. Alternatively, we can use an analytical form of the buildup 
factor that can be incorporated into equation 4 and, through an iterative process using a 
computer or calculator, solve for the desired thickness. There are a number of algebraic 
expressions that have been used to represent B.  
 
Among the most popular is an expression referred to as Taylor’s form of the buildup factor, 
given by 
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where A1, "1, and "2 are constants for a given energy and shield material. Tabulations of 
these parameters can be found in various engineering and shielding sources (e.g., Shultis 
and Faw 1996, 2000). It should be noted that there are a variety of individual values of 
A1,"1, and "2 that will yield the correct value of B for a given energy, shield material, and 
shield material thickness, so different literature sources may have quite different respective 
parameter values. A few other analytical forms that have been used for the buildup factor 
are given below: 
 
Berger’s form: , where a and b are constants for a given energy and shield 
material, 

TbTeaB μμ+= 1

 
Linear form: TkB μ+= 1 , where k is often taken as a constant (e.g., 0.3 to 1), but 

actually varies significantly with shield thickness and photon  
energy (not often a very accurate form), and 

 
Polynomial form: , where ", &, and ( are constants 32 )()(1 TTTB μγμβαμ +++=

 for a given energy and shield material. 
 
Taylor’s form has the advantage that it has only exponential terms in :T, and when it is 
used in an equation that expresses the shielded dose rate, the form of the ultimate solution 
is fundamentally the same as the solution for the primary photons alone, except that it will 
have twice as many terms because of the two exponential terms in the buildup factor. 
 
When the expression for B from equation 5 is inserted into equation 4 we obtain 
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 Multiple photon energies 
 
In the above expressions we have assumed a single gamma-ray energy. When a gamma-
emitting radionuclide emits more than one gamma energy, the same expressions as above 
may be used individually for each gamma energy; the appropriate values for S, E, :en/D, :, 
A1, "1, and "2 must be used for each distinct photon energy. The total dose rate is the sum 
of results for the individual photons. In some instances, when photon energies are close to 
each other, the photons may be grouped together by using the average energy and the 
combined yields. A classic example of this is for 60Co, which emits 1 gamma per 
disintegration at 1.17 MeV and 1 gamma per disintegration at 1.33 MeV. Many shielding 
calculations for this nuclide have been done using an energy of 1.25 MeV and a combined 
yield of 2 gammas per disintegration. When energies are more disparate it is often not 
suitable to attempt to combine them. When quite low-energy photons are emitted along 
with moderate yield high-energy photons, one may often neglect the low-energy photons in 
doing shielding calculations because they will not contribute appreciably to the shielded 
dose rate. Such decisions must be made with some care, however, and generally improve 
with experience. 
 
 Example of shielded point isotropic source calculation 
 
Problem: Determine the soft tissue dose rate, in gray per hour (Gy h-1), at the outer surface 
of a 2-inch thick lead shield from a 3.0 Ci source of 137Cs. Assume that the source may be 
treated as a point isotropic source and that its effective distance from the dose point is 
6.35 cm. We shall also assume that soft tissue can reasonably be simulated by water and 
use the mass energy absorption coefficient for water. 
 
Solution: Following are the values of parameters that are necessary for the solution: 
 
k = 5.76 x 10-7, 
S = (3.0 Ci)(3.7 x 1010 d s-1 Ci-1)(0.85 ( d-1) = 9.44 x 1010 ( s-1, 
E = 0.662 MeV, (Note: The 0.662 MeV photons of concern have a yield of 0.85 per 
disintegration and actually come from the daughter product 137mBa, which has a short half-
life and quickly achieves equilibrium with the 137Cs.) 
:= 1.289 cm-1, 
T = 5.08 cm, 



:en/D = 0.0326 cm2 g-1, 
A1 = 2.632, 
"1 = -0.0145,  
"2 = 0.136, and 
r = 6.35 cm. 
 
Inserting values into equation 7 yields 
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We can readily calculate the part of this dose rate that is due to the primary gamma rays, 
alone, by solving equation 3. If we do this we will obtain a dose rate of 3.32 x 10-3 Gy h-1, 
about 45% of the total dose rate. Thus, for this example, the secondary photons, which 
would be almost all Compton scattered photons, account for more than half of the dose 
rate. The magnitude of the buildup factor, given by the ratio of the total dose rate to the 
primary photon dose rate, is 2.22. In general, as shield thickness increases, the fraction of 
the dose attributable to secondary photons increases. The shield in this example had a 
thickness of 6.55 mean free paths (:T = (1.289)(5.08)). Had we had a shield that was 20 
mean free paths thick we would have found that the buildup factor was about 3.4, implying 
that more than 70% of the dose rate would have been from secondary photons.  
 
It is interesting to observe that if the above problem had dealt with a 137Cs source that was 
shielded by water rather than by lead, but with the same number of mean free paths of 
material (i.e., 6.55), the buildup factor would have been larger than that calculated above 
by about a factor of 10; thus, the portion of the dose rate that would have been associated 
with the secondary photons would have been about 95%. This is because in water the 
photons must undergo many more scattering processes than they do in lead before they 
are ultimately captured and disappear in a photoelectric interaction. The reason for this is 
because the probability of a photoelectric event has a strong dependence on atomic 
number of the material, increasing as about the 4th to 5th power of atomic number, and lead 
has a much higher atomic number than water (82 for lead compared to about 7 for water). 
In water the photon energy must be reduced to somewhat less than 30 keV before the 
photoelectric and Compton interactions occur with equal probability, while in lead the 
analogous energy is slightly less than 600 keV. 
 
We should recognize that to solve the above problem we could have simply looked up the 
value of the point isotropic source buildup factor in one of the cited compilations. Rather, 
we did the problem using the analytical form of the buildup factor to illustrate its use for 
other applications. If, for example, we had been asked to determine what shield thickness 
of lead would have been appropriate to yield a specified dose rate at the shield surface, we 
could have plugged the required dose rate into equation 6 or 7 and used either computer 
software or an appropriate pocket calculator equipped with a hard-wired “solve” routine to 
determine the necessary lead thickness. Additionally, the use of an algebraic expression 



for buildup allows extension of the point kernel method employed above to other source 
geometries. 
 
Extended geometries  

 
Once we have an expression for the point isotropic source, we can write reasonable 
expressions that will apply to other nonpoint source geometries by recognizing that any 
extended source geometry can be represented by an infinite number of points distributed 
throughout the source dimensions. The unfortunate aspect of this approach is that even for 
the next simplest geometry—i.e., a uniform line source—we cannot obtain a neat closed 
form algebraic solution to shielding problems. We can, however, write the differential 
equations that describe the dose rate from one generalized differential element in the 
source and then, by numerical integration, add up the contributions from all such elements 
to obtain final dose rates. We will demonstrate this through a line source application. Let 
us assume that we have a gamma-emitting source distributed uniformly along the length of 
a line. In reality many sources that have one straight line dimension much greater than any 
other dimensions may be treated as a line source. We shall assume a source of length, L, 
with the dose point opposite the end of the line source and along a line perpendicular to 
the source. The gamma-ray emission rate per unit length of source will be given by Sl, 
which has units of gammas per cm per second. The shield of uniform thickness, T, will be 
between the source and the dose point as shown below: 
 

         Line source shielding configuration 
 

              T 
 
      D    
       L    
            l          z 
        2 
        R      Dose Point  
   Line source 
         Shield 
 
Let us select a small (differential) length element, dl, of the line source, located at a 
distance, l, from the lower end of the source at the point in the above diagram where the 
oblique line, D, from the dose point meets the source line. The angle between R and D we 
shall call 2. From the geometry shown we can specify the following: 
 
    D = R sec 2; 

l = R tan 2 and, by differentiation, dl = R sec22 d2  
z = radiation path length through shield = T sec 2, and 
Sldl = gamma emission rate from differential source element, dl. 
 

The shielded differential dose rate at the dose point from primary photons emitted from the 
differential source element may then be written: 
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To obtain the total primary photon dose rate from all differential source elements along the 
line source we have simply to integrate the above expression over the range of the 
variable, 2, i.e., from zero to the angle whose tangent is L/R: 
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The integral is of a form usually identified as the Sievert integral or the secant integral. An 
exact solution is not available for this integral, but it is easily solved using available 
computer software or a programmable calculator that has integration capability. There are 
also tables available that yield acceptable approximate solutions of the integral for given 
values of 2 and :T. One advantage to performing the above calculation for the dose rate at 
a point opposite the end of the line source is that if the dose point in another case is 
opposite some other part of the line source, the result for such case can be readily 
obtained by adding together the dose rates from two line sources where the dose point is 
opposite the end of each line source. Thus, for a situation where the dose point was on a 
line perpendicular to the line source, and the source length above the dose point was L1 
and the source length below the dose point was L2, the primary photon dose rate would be  
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In order to account for the added dose from buildup from a single line source, again with 
the dose point opposite the end of the line, we would insert Taylor’s expression for B into 
equation 8 and then proceed as earlier to obtain 
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It is clear that the form of the solution with buildup is fundamentally the same as that for 
the primary photons except that there are two similar terms that arise from the two terms in 
the buildup factor, and where the parameter : appeared in the equation for primary 
photons the parameters (1+"1): and (1+"2): appear in each of the respective terms in the 



solution when buildup is considered. For the case when the dose point is opposite some 
other point on the line source we would obtain 
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The summation from i = 1 to i = 2 accounts for the two line segments, L1 and L2.  Again, the 
solution is of the expected form, now with four terms, two for the dose rate contribution 
from each line segment. 

 
Example of shielded line source calculation 

 
We will perform a calculation again for 3 Ci of 137Cs with the same two inches of lead 
shielding, but in this case we will assume the activity is distributed uniformly along a line 1 
meter in length and that the dose point is at a perpendicular distance of R = 6.35 cm from 
the source and opposite the center of the source. All the attenuation and buildup 
parameter values are the same as those used in the point source calculation. Since the 
dose point is opposite the source center we will use equation 11, with L = 50 cm, and 
multiply the result by two (or use equation 12 with L1 = L2). The value of Sl is obtained by 
dividing the total gamma emission rate by the length of the source, which yields 9.44 x 
1010 ( s-1/100 cm = 9.44 x 108 ( s-1 cm-1. Note that the upper limit of the angle 2 is the 
arctangent of L/R = tan-1(50/6.35) = 1.44 radians. 
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The first integral yields a numerical integration value of 1.884 x 10-3, the second integral 
value is 4.099 x 10-4, and the terms in front of the integrals combine to a value of 0.294, 
the final dose rate then being 4.33 x 10-4 Gy h-1. This dose rate is almost 20 times less 
than that from the equivalent activity point source analyzed above; this is expected 
because, although the perpendicular distance from the dose point to the line source is the 
same distance used for the point source calculation, most of the source activity of the line 
source is considerably farther away from the dose point than in the case of the point 
source. In addition the shield is more effective for the line source because much of the 
gamma radiation travels oblique paths through the shield, thus increasing the distance 
traveled through the shield material. We might also note that if we solved for the primary 
photon dose rate alone, we would have obtained 1.90 x 10-4 Gy h-1. If we divide this 
number into the total dose rate obtained above we get 2.28, which conceptually represents 
the average value of the dose buildup factor for this shielding situation. This value is 
slightly larger than the value of 2.22 obtained for the point source because of the effect of 
photons traversing longer path lengths through the shield in the case of the line source. 
 



It is a fairly easy matter to extend the analyses to other regular geometries, including area 
sources and volume sources, but these cases are somewhat beyond the scope of 
intentions here. In such cases we proceed in a fashion similar to what we did for the line 
source except that we must take proper account of the different geometries. For area 
sources the differential source element will be an area element, and the source strength 
will be defined in terms of gamma emission rate per unit area; for volume sources we must 
specify a differential source volume element and a gamma emission rate per unit volume. 
In the case of a volume source we may also have to account for attenuation within the 
source volume, the volume itself becoming a shield for the radiation.  
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