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EGR 600 — Analysis
Summer 2006

Description: Undergraduate mathematics topics are reviewed and then extended to solve
advanced engineering problems. The course will focus on solving problems such as project
management, economic justification, modeling random processes, risk analysis, and system
modeling. The course will make extensive use of computers in an active learning environment.

Pre-requisite: Admission to MSE or permission of instructor

Texts: Jack, H., Engineering Analysis, 2006.

Software: Scilab (www.scilab.org) or Matlab

C/C++ compiler

Instructor: Dr. Hugh Jack

Office: EC 718

E-mail addresses:  jackh@gvsu.edu
Phone: 331-6755

Office hours: 5:00-6:00pm Mondays
Class time: 6:00-8:50pm Mondays

Instruction Methods: Lecture, discussion, assignments.

Homework: Weekly homework problems will be assigned to reinforce concepts. In some cases
students will be assigned alternate homework problems specific to their discipline.

Quizzes: Quizzes will be given frequently to assess pre-lecture reading and topic mastery.
Exams: A midterm and comprehensive final will be used to assess student learning.

Semester Project: Students will work individually on a semester project that explores an
advanced area of engineering analysis. The project report will emphasize the need for the clear
communication of mathematical concepts including a written report and an oral presentation.
Computer Use: Students will be expected to use computers to analyze engineering problems.
Scilab will be the preferred computational platform, however Matlab may also be used. Students

may be required to write programs in C or C++.

Grading Policies:
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Homework and Quizzes 50%
Midterm Exam(s) 15%
Final Exam 35%

Note: Students must earn passing grades in all components of the course in order to receive a
passing grade for the course.

Grading Scale:
A 80-100
B 70 - 80
C60-70
D 55-60
FO0-55

Disability Services: If there is any student in this class who has special needs because of a
learning, physical, or other disability, please contact me of the Office of Academic Support (OAS)
at 331.2490.

Copyright Notice: Copying, displaying and distributing copyrighted works, may infringe the
owner's copyright. Grand Valley State Universit y's Interim Policy on Copyright provides
information about whether your use of a copyrighted work is a fair use or requires permission.
Any use of computer or duplicating facilities by students, faculty or staff for infringing on the use
of copyrighted works is subject to appropriate disciplinary action as well as those civil remedies
and criminal penalties provided by federal law.

Tentative Topics:

1. Mathematics Review and introduction to Scilab
Scilab Tutorial
Chapter - Numerical Values and Units
Chapter - Algebra
Chapter - Trigonometry

2. Programming and Data Presentation
Chapter - Graphing
Chapter - (PROGRAMMING??)

3. Probability and statistics applications
Chapter - Permutations and Combinations
Chapter - Probability

4. Calculus applications
Chapter - Calculus
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Differential equations

Chapter - Differential Equations
Economics

Chapter - Financial
General emphasis specific review

Chapter - (by discipline)

Chapter - Boolean

Chapter - Transforms
Optimization

Chapter - Optimization
System reliability

Chapter - Reliability
Project scheduling

Chapter - Projects
Directed graphs

Chapter - Graphs

Chapter - Trees
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27. PREFACE

- the book is designed for use for entry level graduate students, or working professionals looking
for review/topical introduction.

- computer based solutions are used liberally throughout the book with a bias towards practical
problems.

- basic book design - short chapters, easily used as one or more modules per class

- review modules are marked with the title review. This allows review material to be reviewed
without having it dominate the book

- programs are written in C and Scilab. Scilab has been used because it is available freely, but is
very similar to matlab

- example programs are boxed

- sample problem solutions are boxed

- asides and notes are given as appropriate

- the text is written to be very direct and student friendly in tone.

- written from an engineers perspective - using mathematics as a tool

- chapters begin and end with summaries

- in some cases topics are presented out of order. Although this would be a major problem if it was
a first introduction, as a review it is done in the interests of brevity.

27.1 Todo

- create a map of techniques for solving specific problems.
- add a symbolic algebra package

Topics to Add/expand ??

analysis of constrained path systems
Discrete math
Algebra
power series and Taylor series
Data
graphing data
error estimation
linear regression
curve fitting with splines
data representation graphs, tables and accuracy
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statistical analysis of a system

Random Processes

random number generation
prediction of process outcome
Quality control

System Modeling

(ME) state space analysis
(ME) Eigenvalues and vectors

Advanced Calculus

Optimization

Programming

(ME) Partial differential equations

(ECE) Laplace transforms

Convolution

Fast Fourier transforms

differential equations, state space and numerical integration

(PDM) Searching convex/concave functions
(MO) Searching convex/concave functions
(MO) Gradient descent

(MO) Cost and penalty functions

programs - basic structure and execution
program entry points
syntax
Variable names
variable/data types
input
outputs
logical expression
conditional execution with ifs
for loops and conditions
functions/subroutines
input/output argument lists
defining a function
calling a function and dealing with return values
the difference between calling and defining a function

Discipline Specific

ECE

Frequency domain - Fourier, Bessel
EM Theory review

Feedback Control Theory

3 phase electrical theory
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27.2 Problems Not Sorted

12a. Find y(t).
y(s) _ 52 +4s
X(s) P +6s+9

x(t) =5

12b. Find x(t).
X+t4x+2x =3 x(0) =1 x(0) =0

12¢. An existing manual production line costs $100,000 to operate per year. A new piece of auto-
mated equipment is being considered to replace the manual production line. The new equipment
costs $150,000 and requires $30,000 to operate. The decision to purchase the new machine will be
based on a 3 year period with a 25% interest rate. Compare the present value of the two options.

14. For the system pictured below put the equations in state variable form and simulate the system
using numerical integration. Assume values to test your program.

s A pulley system has the bottom pulley anchored. A mass is
hung in the middle of the arrangement with springs and
Kd3 = Ks3 ?izlflltpers on either side. Assume that the cable is always

M3 ; <3
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15. Find the steady state outputs for the system using the given input functions.
Ry
>—©O

1
R 1 =R2=R3 =R4= 1 Kohm
C=1uF
a) V; = 5sin(100¢)
b) V, = 5sin(1000000¢)
c) V.=5
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28. NUMERICAL VALUES AND UNITS

Topics:
* Numbers, Constants, Units

Objectives:
* To review the use of basic numbers, including significant figures
* To review the use of units to keep track of numerical magnitudes

28.1 Introduction

28.2 Numerical Values

28.2.1 Constants and Other Stuff

» Some basic definitions,
numeric - a literal numerical value
variable - a symbol used to represent a quantity that will change, often represented with a
lower case symbol
constant - a value that will not change, often represented with an upper case symbol
subscripts - letters or numbers below a variable to create new (related) variables.

« greek letters are often used for variables and constants
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lower case upper case name

alpha
beta
gamma
delta
epsilon
zeta
eta
theta
iota
kappa
lambda
mu

nu

xi
omicron
pi

rho
sigma
tau
upsilon
phi

chi

psi
omega

EE€ERDVCAQDAOINLSE A~ DI 2R
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* The constants listed are some of the main ones, other values can be derived through calculation.

n
e = 2.7182818... = lim (1 +’l’) = natural logarithm base
n—> 0
n = 3.1415927... = pi

v = 0.57721566 = Eulers constant

lradian = 57.29578°
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* In Scilab

// basic variables and constants

a=15; // define a variable with a value of 5

b = %pi; // the value for pi is assigned to b

¢ = %e; // the natural number

d = %inf; // infinity

e = %nan; // not a number

m = %t; // a logical true

n = %f; // a logical false

p = %i; // the imaginary number

q = eps; // a very small positive number, or 0+

abs(x); // returns the magnitude of x

int(x); // converts a real to an integer value

// getting information

who // print all variables

help sin // open a help window for the sin function

help + // get help on basic operators

apropos imaginary // look for functions on imaginary numbers

28.2.2 Factorial

* A compact representation of a series of increasing multiples.

nl=1-2-3-4-...-n

0!

1

28.2.3 Significant Figures

* Sig figures rules,
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- leading zeroes do not count as significant figures.

- trailing zeros will count as significant figures.

- when doing multiplying the results should will (generally) have the same number of sig-
nificant figures as the least significant number.

- when adding, the least accurate number determines the accuracy of the result.

123.456 6 significant figures
123.45600 8 significant figures
0.000345 3 significant figures
123 - 456789 = 56185047 = 56.2 x 10° 3 significant figures
0.12(3456) = 414.72 = 0.41 x 10° 2 significant figures
34 +56.789 = 90.789 = 91 2 significant figures

* In computation the standard is to keep all of the digits, but the final answer should be rounded to
the correct number of significant figures

* Based upon the accuracy of most measuring instruments, and the ability to specify components,
most engineering calculations will have 3-6 significant figures. Do not use all of the digits pro-
duced by computer/calculator unless all of the digits can be justified.

28.2.4 Scientific and Engineering Notations

* In scientific notation one digit is ahead of the decimal, and all other values follow the decimal.
The exponent is adjusted accordingly.

a = 123456789 = 1.23456789 x 10° = 1.23456789¢3
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* Scilab

a=1234.5678912345678;

a // by default 8 digits will be printed

format(’v’, 20) // set the number of displayed characters to 20

a// prints 1234.567891234567892

format(’v’, 5)

a// prints 1234.

format(’e’, 8) // set the display to exponent notation

a// prints 1.2D+03

a=1.23456789123456789¢3; // the same value of a entered in exponent format

* Engineering notation is similar to scientific notation, but the exponent is always a multiple of 3
so that it corresponds to magnitude multipliers (i.e., micro, milli, kilo, mega).

12345.6789 = 12.3456789¢3
0.000123456789 = 123.456789¢ — 6

a

b

* The current version of Scilab does not seem to support engineering notation.

28.3 Complex Numbers

* ‘1> will be the preferred notation for the complex number, this is to help minimize confusion with
the ‘1’ used for current in electrical engineering.

* The basic algebraic properties of these numbers are,

The Complex (imaginary) Number:

j =AM j o=
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* Scilab,

j=sqrt(-1); // define j as the imaginary number
A =5+ 3%j; // define a complex number

B =7+ 9j; // define another

A /B // a complex operation

28.4 Units and Conversions

* Units are essential when describing real things.

» Good engineering practice demands that each number should always be accompanied with a
unit.

28.4.1 How to Use Units

* This section does not give an exhaustive list of conversion factors, but instead a minimal (but
fairly complete) set is given. From the values below most conversion values can be derived.

* A simple example of unit conversion is given below,
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**a simple unit conversion example:

Given,

d,=10m  d,=5ft

Find the distance ‘d’,

d=Jd+d

2 2
nd = J(10m)> + (5/0) . From the tables
multiply by 1

d = J100m” + 25/ / 1ft = 0.3048m

0.3048m)2 1 = 0.3048m
1/t h 1/t

keep the units in the equation

d = J100m2+25ft2(

2
cd = J 100m” +25£1*(0.092903)
fr

cancel out units

d = 100m +25(0.092903)m’

~d = A102.32m> = 10.12m

28.4.2 SI Units

1. Beware upper/lower case letter in many cases they can change meanings.
e.g. m = milli or mega?
2. Try to move prefixes out of the denominator of the units.
e.g., N/ecm or KN/m
3. Use a slash or exponents.
e.g., (kg°m/sz) or (kg*m-s'z) or (kg m s**-2) or (kg m s "-2)
4. Use a dot in compound units when possible.
e.g., Nem
5. Use spaces to divide digits when there are more than 5 figures, commas are avoided because
their use is equivalent to decimal points in many places (e.g., Europe).
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» Base and derived units

Base units m = length
kg = mass
s = time

A = current
K = temerature
mol = chemical quantity

cd = candela

Derived unit examples N = ke-m r=C
s ’I//
=N- ==
J=N-m 1
Pa:ﬂz Wb =V-s
W={n r="
4 o W
A A

* In some cases units are non-standard. There are two major variations US units are marked with
‘US’ and Imperial units (aka English and inch based) are marked with ‘IMP’.

28.4.3 A Table

Distance
1 ft. (feet) = 12 in. (inches) = 0.3048 m (meter)
1 mile = 1760 yards = 5280 ft = 1.609km
1 in.(inch) = 2.540 cm
1 yd (yard) = 3 ft.
1 nautical mile = 6080 ft. = 1852 m = 1.150782 mi
1 micron = 10%m

1 angstrom = 1019 m



Area

Velocity

Angle

Volume

Force/Mass
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1 mil =107 in

1 acre = 43,560 ft. = 0.4047 hectares
1 furlong = 660 ft

1 lightyear = 9.460528e15 m

1 parsec = 3.085678e16 m

1 acre = 43,559.66 ft>

1 Hectare (ha) = 10,000 m?
1 Hectare (ha) = 10,000 m?
1 Hectare (ha) = 10,000 m?
1 Hectare (ha) = 10,000 m?

1 mph = 0.8689762 knot

1 rev = 2PI radians = 360 degrees = 400 gradians
1 degree = 60 minutes
1 minute = 60 seconds

1 US gallon =231 in’
1CC=1cm’

1 IMP gallon = 277.274 in®

1 barrel =31 IMP gal. = 31.5 US gal.

1 US gal. =3.785 1 = 4 quarts = 8 pints = 16 cups

1 liter (I) = 0.001 m’=2.1 pints (pt) = 1.06 quarts (qt) = 0.26 gallons (gal)

1 gt (quart) = 0.9464 1

1 cup (c) = 0.2365882 1= 8 USoz

1 US 0z =8 US drams = 456.0129 drops = 480 US minim = 1.0408 IMP oz
= 2 tablespoons = 6 teaspoons

1 IMP gal. =1.201 U.S. gal.

1 US pint =16 US oz

1 IMP pint =20 IMP oz

Itablespoon = 0.5 oz.

1 bushel = 32 quarts

1 peck = 8 quarts

I N (newton) = 1 kg-m/s2 =100,000 dyne

1 dyne = 2.248*10 Ib. (pound)
1 kg =9.81 N (on earth surface) = 2.2046 lb
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11bf = 16 oz. (ounce) = 4.448N

1 0oz. =28.35 g (gram) = 0.2780N
1 1b=0.03108 slug

1 kip = 1000 Ib.

1 slug=14.59 kg

1 imperial ton =2000 Ib = 907.2 kg
1 metric tonne = 1000 kg

1 troy oz = 480 grain (gr)

1 g =35 carat

1 pennyweight = 24 grain

1 stone =14 1b

1 long ton = 2240 Ib

1 short ton = 2000 1b

Pressure
1 Pascal (Pa)=1 N/m? = 6.895 kPa

1 atm (metric atmos.) =760 mmHg at 0°C=14.223 Ib/in’=1.0132*10° N/m?
1 psi=2.0355 in. Hg at 32F =2.0416 in. Hg at 62F

1 microbar = 0.1 N/m?

Scale/Magnitude
atto (a) = 1018
femto (f) = 10713
pico (p) = 10°12
nano (n) = 107
micro (1) = 107
milli (m) = 1073
centi (¢) 1072
deci (d) = 107!
deka (da) =10
hecto (h) = 10°
kilo (K) = 10°
mega (M) = 106
giga (G) = 10°
tera (T) = 1012
peta (P) = 1013
exa (E) = 1018

Power
1 h.p. (horsepower) = 745.7 W (watts) = 2.545 BTU/hr. = 550 ft.1b./sec.
1 ftelb/s = 1.356 W

1J (joule) =1 Nem = 107 ergs = 0.2389 cal.
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I1W=11J/s
lev=160219%10"177]
lerg=10"1J
Temperature
°F =[(°C*9)/5]+32, °C = Celsius (Centigrade), F = Fahrenheit
K =Kelvin
Rankine (R) = F - 459.666
0.252 calories = 1 BTU (British Thermal Unit)
-273.2 °C=-459.7 °F = 0 K = 0 R = absolute zero
0°C=32°F=273.3 K=491.7 R = Water Freezes
100°C = 212°F =373.3 K= 671.7 R = Water Boils (1 atm. pressure)
1 therm = 100,000 BTU
Mathematical
© radians = 3.1416 radians = 180 degrees = 0.5 cycles
1 Hz =1 cycle/sec.
1 rpm (revolutions per minute) = 60 RPS (Revolutions per second) = 60Hz
1 fps (foot per second) = 1 ft/sec
1 mph (miles per hour) = 1 mi./hr.
1 cfm (cubic foot per minute) = 1 ft3/min.
e=2.718
Time

1 Hz (hertz) =1 gl

1 year = 365 days = 52 weeks = 12 months
1 leap year = 366 days

1 day = 24 hours

1 fortnight = 14 days

1 hour = 60 min.

I min = 60 seconds

1 millenium = 1000 years

1 century = 100 years

1 decade = 10 years

Physical Constants
R =1.987 cal/mole K = ideal gas law constant

K = Boltzmann’s constant = 1.3x10716 erg/K = 1.3x1023 J/K
h = Planck’s constant = 6.62x107’ erg-sec = 6.62x1073% J.sec

Avagadro’s number = 6.02x10%3

atoms/atomic weight
density of water = 1 g/cm3

electron charge = 1.60x107'° coul.
electron rest mass = 9.11*10**-31 Kg
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proton rest mass = 1.67*10**-27 Kg

speed of light (c) = 3.00x10'% cm/sec

speed of sound in dry air 25 C =331 m/s
gravitational constant = 6.67*10**-11 Nm**2/Kg**2
permittivity of free space = 8.85*10**-12 farad/m
permeability of free space = 1.26*10**-6 henry/m
mean radius of earth = 6370 Km

mass of earth = 5.98*10%*24 Kg

Electromagnetic
magnetic flux = weber (We) = 10**8 maxwell
inductance = henry
magnetic flux density = tesla (T) = 10**4 gauss
magnetic intensity = ampere/m = 0.004*PI oersted
electric flux density = coulomb/m**2
capacitance = farad
permeability = henry/m
electric field strength = V/m
luminous flux = lumen
luminance = candela/m**2
1 flame = 4 foot candles = 43.05564 lux = 43.05564 meter-candles
illumination = lux
resistance = ohm

28.5 Problems

1. Show the units for Joules in base units. (ans. kg m"2 / s"2)
2. How many kips are in 2.00 metric tonnes. (ans. 4.41 kip)

3. Do the following calculation using significant figures.

0.010 x 1.2345 + 0.0234567 (ans. 35e-3)



2. Simplify the following expressions.

a)

b)

c)

(6 +8))

8j + 6
(4 +3)°

2+ 5!
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ans.

ans.

ans.

_ 28+ 96/

6 8.
25 25

122
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29. ALGEBRA

Topics:

Objectives:

29.1 The Fundamentals

29.1.1 Basic Operations
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commutative

distributive/collective

atb =>b+a

atb=c+d

a(b+c) = ab+ac

J.a =

ct+td->b

associative a(bc) = (ab)c at(b+tc)=(at+tb)+tc
_ Loo_cd
ab = cd .a 5
silly mistakes
atb a b
* Scilab example,
b=75;
c=6;
d=7;
a=c*d/b
a=c+d-b
29.1.2 Exponents

* The basic properties of exponents are so important they demand some sort of mention
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(M) = T X’ = 1,ifxisnot0
- l
() _ w1 T
m m-—n
(x7) x

1
= (nth root)

* Scilab example,

X =15;
n=z;
m=4;
y=6;
X n * x m
xNn + m)
x**(n+m)

29.1.3 Basic Polynomials

* The quadratic equation.

ax’+bx+c =0 = a(x—r)(x—r,)

7"1,7"2 =

—biA/b2—4ac

2a
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ce.g.,

25 +4x+2 = 0

_ 4+ 47— 402)(2)

°0) —1+.J0 = -1,-1

X
e D) = oA/notethesigns

» Complex roots will occur when,

b2—4ac<0

* Cubic equations can be solved explicitly, although this is too much for common memorization.

X Aaxt+bx+tc=0 = (x=r)x—=ry)(x—r3)

First, calculate,

2 3
Q:3b—a R:9ab—27c—2a S=3/R+ /Q3_|_R2 7=3p_ /Q3+R2

9 54

Then the roots,

f

(S-7) ry =

f

(s - 1)

r1=S+T—§ ry =

L»JIQ
WIQ

T T

* On a few occasions a quartic (4th order) equation will also have to be solved. This can be done
by first reducing the equation to a quadratic,
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K ral b tex+d =0 = (x—r)x—ry)(x—ry)(x—ry)
First, solve the equation below to get a real root (call it ‘y’),
v~ by? + (ac—4d)y + (4bd — > —a*d) = 0

Next, find the roots of the 2 equations below,

. _22+(a+A/a2—4b+4yJZ+(y+A/y2—4d] B
2

2 2 -0
[2 [ 2
3,1y = 22+[a_ : _4b+4sz+(y_ 2 —4dJ =0
2 2
* In Scilab,
x =poly(0, ’x’);
roots(3 * x"2 +4 * x +2)
q=1[2,4,3];
p = poly(q, 'x’, ’coeff’); // defines a polynomial using a vector
roots(p)

derivative(p, ’x’); // finds the derivative of the polynomial
horner(p, 5); // evalautes the polynomial at 5
s=(x+1)/p;// an algebra operation

29.2 Special Forms

29.2.1 Completing the Square
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X+ Ax+B = (x+C)°+D

= ¥’ +2Cx+(C*+ D)
A4=2C B=C+D
c=§ D=8B-C

for example, given,
5x+50x + 10
= 5(x*+ 10x +2)

= 5((x+5)°-23)

29.2.2 Newton-Raphson to Find Roots

* When given an equation where an algebraic solution is not feasible, a numerical solution may be
required. One simple technique uses an instantaneous slope of the function, and takes iterative
steps towards a solution.

A
Y rd
()
* The function f(x) is supplied by the user along with an initial guess.

* This method can become divergent if the function has an inflection point near the root.
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* The technique is also sensitive to the initial guess.

A

* This calculation should be repeated until the final solution is found.

* Scilab example,

NEWTON RAPHSON ROOT EXAMPLE

29.3 Complex Numbers

» Complex values
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The Complex (imaginary) Number:

j= A ji=-

Complex Numbers:

a+bj where,
a and b are both real numbers

Complex Conjugates (denoted by adding an asterisk ‘*’ to the variable):
N =a+bj N* = a—bj

Basic Properties:
(a+bj)+(c+dj) = (a+c)+(b+d)j
(a+bj)—(c+dj) = (a—c)+(b—d)j
(a+bj)-(c+dj) = (ac—bd)+ (ad+be)j

N _atbj _ E(N__*) _ (a-irbj)(c—dj) _ ac+bd+(bc—ad).
M~ crdi M\NY T \crag\e—ay) T 2, 2, 2V

» We can also show complex numbers graphically. These representations lead to alternative repre-
sentations. If it is not obvious above, please consider the notation uses a cartesian notation, but
a polar notation can also be very useful when doing large calculations.
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CARTESIAN FORM

Ij
A imaginary (j)
1 N =R+]Ij
1 R
A+ real
T A= A/R2+[2 R = AcosH
R
POLAR FORM 5
A imaginary (j)
1 N =A4/0
1 0
1 R
e real

A = amplitude

= phase angle

I Y I
T 1T T 1T
(@n)

» We can also do calculations using polar notation (this is well suited to multiplication and divi-
sion, whereas cartesian notation is easier for addition and subtraction),

AZB = A(cosO +sin0) = 4e°
A+jB _ A JB
e =

ee = eA(cose +jsin0O)

(A4,£0,)(4,£0,) = (4,4,)£(0,+0,)

(4,£20)) (4,
(4,20,) (,4_)4(91_62)

(4£6)" = (4")£(n®) (DeMoivre’s theorem)
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* Note that DeMoivre’s theorem can be used to find exponents (including roots) of complex num-
bers

 Euler’s formula: ¢° = cos® +jsin®

Note: for 0+ 1 = cos0 +;sinO

T

e = —

x 2
)

e :]

* From the above, the following useful identities arise:
eje I efje
cosf = ————
2
sin@ =

* In Scilab

J=sqrt(-1);

A=(1+2%*7)/(3+4%*));

A

[mag, theta] = polar(A);

mag, theta // the magnitude and angle of the complex angle A
abs(A); // the magnitude of the complex number

real(A); // the real part of the complex number

imag(A); // the imaginary part of the complex number
conj(A); // the conjugate of the complex number
atan(imag(A), real(A)); // the angle of the complex number

29.4 Equality and Inequality

» Some basic relationships are illustrated below with number lines. The shaded dots indicate that
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the values include the point. Unshaded dots indicate that the values approach but do not equal
the value.

X =a - ‘ p X
a
x#a % X
a
x<a M p X
a
x<a H p X
a
xX>a - b X
a
x2a - % X
b a b
a<x< <—H—> X xe(a,b)
<x<h a b
a<x< - . ‘ p X x € [a, b]
a b
b<x<a g C C X

- rearranging equations with inequalities
a+b<5 .'.a<5_b
- When doing calculations there is some roundoff error that result in a number that should be zero

but has a finite value. Consider single precision floating point numbers with 7 digits, or double
precision with 14, the last digit is equality in numerical calculations using a tolerance. In these
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cases a tolrance is used between the target and actual values to determine equality.

¢ = |val| — target

if(e < 0.000001)thens = 0

* In Scilab,

if (x>A)|(x <B) then

// program statement
else if x == A then

// more program statements
end

* Another Scilab example,
F(x) =15 0<x<5
=0 x<0,x>5

function foo = F(x)
if (x> 0) & (x <=5) then
foo=175;
else
foo=0;
end
end function

29.5 Functions

* Functions help to identify and organize self contained expressions.
» defining functions encourages reuse of mathematical expresions or program code

* terminology,

f(x) (say 'fofx’)
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* an example function is,
fx) = 27 +3
f2)=2*+3 =1

* In Scilab the function becomes,

function foo = f(x)
foo = x"2 + 3;
endfunction

mprintf("%f \n", f(2));

29.6 Special Functions

29.6.1 Logarithms

* Logarithms also have a few basic properties of use,

The basic base 10 logarithm:

logx =y

The basic base n logarithm:

log,x =y

The basic natural logarithm (e is a constant with a value found near the start of this section:

Inx = log,x =y

Note: Use indents when writing pro-
grams to ensure structure. While
these are not necessary they will
make debugging much easier.

Note: Using functions is not neces-
sary in simpler programs, but
larger programs will become very
difficult to work with if functions
are not used.

x = 10"

X:l’ly

x=é

* All logarithms observe a basic set of rules for their application,
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log,(xy) = log,(x) +log,(y) log,(n) =1

log, (1) = 0
log, () = log, (x)-log, )

log,(x") = ylog,(x)

log,, (x)
P8 Tog,, ()
In(44£0) = In(4) + (0 +2nk); kel
e.g.,
solve 5 =10"
log(5) = nlog(10)
_ log(5)
log(10)

* Note: most computers use the ’log’ function for the natural logarithm. The base 10 logarithm is
normally ’log10’.

* In Scilab this is
log10(3) - base 10 log

log(3) - natural log
log(exp(10))

29.7 Solving Systems of Linear Equations
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* Systems of linear equations are of the form below,
x+y =35
2x+3y =8

* In general there must be the same number of equations and unknowns to solve the equations.
* In some cases the equations will not be solvable. In this case we say the equations are singular.

29.7.1 Substitution

» Substitution is the most fundamental method for solving linear equations, but it is the least rou-
tine,

Given,
xty =15
2x+3y =8
To solve for y, we substitute to eliminate x.
Sx =5-y
22(5-y)+3y =8
Ly ==2
To solve for x, we substitute the value for y into an earlier equation.
2x=5-(-2)=17

* In Scilab this is

29.7.2 Addition

* Polynomials can be added to eliminate variables (in a matrix for this is referred to as the Gauss-
Jordan row reduction method).
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Given,

x+ty =35
2x+3y =8

multiply and add the equations,

(-2)(x+y=5)
2x+3y =8
Ox+1y = -2 Ly =2

29.8 Simplifying Polynomial Expressions

29.8.1 Partial Fractions

* The next is a flowchart for partial fraction expansions.
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start with a function that
has a polynomial numerator
and denominator

order of the
numerator >=
denominator?

use long division to
reduce the order of the
numerator

Find roots of the denominator
and break the equation into
partial fraction form with
unknown values

w

use limits technique.
If there are higher order
roots (repeated terms)

use algebra technique

then derivatives will be
required to find solutions

* The partial fraction expansion for,
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_ 1 _ A B C
X(S = ——2+;+m
s(s+1) s
5 1 _
C = hm[(erl) . }—1
s>l sT(st1)

4= lim[sz(;ﬂ _ lim[ 1 ]= 1
2 sools+1

s=>0L MY (s+1)
- ] - sl g -

* Consider the example below where the order of the numerator is larger than the denominator.

55°+3s°+8s+6
s2 +4
This cannot be solved using partial fractions because the numerator is 3rd order
and the denominator is only 2nd order. Therefore long division can be used to

reduce the order of the equation.

x(s) =

5s+3

sS+4 | 55°+3s2+85+6

5s3 +20s
352125+ 6
352+ 12

—-125-6
This can now be used to write a new function that has a reduced portion that can be
solved with partial fractions.

)c(s)=5s+3+_12L6 solve —12s-6 _ _4 -+ B.
s +4 sS4 ST s-Y

* When the order of the denominator terms is greater than 1 it requires an expanded partial frac-
tion form, as shown below.
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5

s (s+1)

- 3:éz+§+ C3+ D2+ fl
Sist1y s S (s+1) (s+1)’ 6D

» We can solve the previous problem using the algebra technique.

5 :42+§+C+D+E
S

S2(S+1)3 s (S+1)3 (S+1)2 (s+1)

3 3 2 2 2 2
_ A t+t1)y +Bs(s+ 1)y +Cs"+Ds (s+ D)+ Es (s+1)

3
s2(s+ 1)

_ S'(B+E)+s (A+3B+D+2E)+5s°(34+3B+C+D+E)+s(34+B) +(4)

3
sz(s+l)
_ I - o _ I L
01001]|4 0 A 01001 |0 5
13012||B 0 B 13012 |0 -15
33111)|C| = 1|0 Cl =1|33111 |0 7|5
31000(|D 0 D 31000[ |0 10
110000 |E]| 15 E| 110000 |5 | 15 ]
5 =%+i+ 5 N 10 15

_— +
Sis+1y s S (s+1) s+t GFD

29.8.2 Summation and Series

b
» The notation x. 1S equivalentto x  +x +x + ... +Xx, assuming a and b are integers
i a a+t1 a+?2 b

i=a
and b > a . The index variable i is an index often replaced with j, k, m, and n.

* Operations on summations:
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b a
IR
i=b

i=a

b b
Doax; = ayx

i=a i=a

b b b

zxi+ zyj = Z (xi+yl‘)
i=a j=a i=a

b c c
in+ Z x; = in
i=a i=b+1 i=a

b d b d
2N 2| T 2
i=a j =c i=aj=c

* Some common summations:

N
Si= %N(N+1)

i=1

N-1 1 N
i % a1
z O =< 1-a’ for both real and complex o .
i=0 N,oa =1
z o = ﬁ, lal < 1 for both real and complex o.. For |a| > 1, the summation does not
i=0

converge.
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* In Scilab

LOOP EXAMPLE

29.9 Limits

* Limits stuff goes here.....

29.10 Problems

1. Rearrange the following equation so that only ‘y’ is on the left hand side.

+x _ —xtxz+2z
- =x+2 ans. YT T 1

ytz
2. Solve the following equation to find ‘x’.

26" +8x = -8 ans. x=-2, -2
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3. Solve the following system of equations using substitution.
x+2y+3z =35 ans. x=-7. y=18.75,z=-8.5
x+4y+8z =0

4x+2y+z =1

4. Simplify the following expressions.

a)  nlog(x)+ mlog(y) - log(2) "
ans. log( )
z
5. Simplify,
(5x+3y)—2x-"Ty) ans. 3x+ 10y
(5x2+3y)—(2x—7y) 5x2—2x+4y
X450+ 6 x+2
X+ Tx+ 12 x+4
S 22
x 3x 3x
S_1 8
x 3x 3x
5 Sx
3 7 3x-17
X
5(x+3)-9(x-6) —4x+ 69
5 6 _
x—2 x+3 x =27
6. Multiply,
ans. 2
(2x+3)(5x+4) 10x™ +23x + 12

(2x° +3x+4)(5x + 4) 10x° +23x° + 32x + 16




7. Factor,
x2—4
x2—4y2
XX dx+4
X H5x+6
10. solve for x, y,
S5x+3y =10
x-y =20

11. Find roots,
2
x +2x+100 = 0

1224100 = 0

13. Convert the following log to base 10,

log 3
14. Find x,
X = 1372
57 = 1372
15. Simplify,
logA + log B

ClogD
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ans.
(x+2)(x-2)

(x +2y)(x—2y)
(x—2)(x-2)
(x+2)(x+3)

ans. x=y=1.25
ans. 14 J-396
4
-396
=4 -1+
x == 1+ 1

ans. 0.613

ans. x = 1.826

ans l10 (AB-D)

) o g




16. Find the polar form for,

5+6)

17. Find the cartesian complex value for,

10£0.13rad

18. Find the cartesian complex value for,

(10 £0.13rad)’

19. Solve,
—5x-2>3x+4
X -36>0
2
x +36>-12x
20. Solve,

(8 —3/)— (12 + 47)
(4 +5/)°

8 3;

(=2

(x—6—-4j)(x—6+4))
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ans.

ans.

ans.

7.81£0.876rad

9.92 + 1.30;

924.9 + 380.2/

ans.

x<-0.75

x| > 6

x>

ans.

—4-7j
— 9 40j

0.415 - 1.268;

X —12x+52
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21. Find the limits below.

3
a) lim[t;SJ ans. 5
t—0 5 +1
£+5
b) lim[ 3 J ans. 1/5
(>l 57 4 1

22. Evaluate the limits,

lim M ans.
t—>0o I

lim sin(?)
t—>0

lim sin(z)
t— ©

lim sin ()
t—0

. —t
lim te
t— o

. —t
lim te
t—0

23. Reduce the following expression to partial fraction form.

X+ 4 ans. 4 13 .5
X+ 6x° +9x 90X 3(x+3) 9(x+3)

29.11 Challenge Problems



page 54
1. Write a program (in Scilab, C, etc.) that will perform the following calculation.

Y@ = 3 (@i’

i=1

2. Develop a program to fit a polynomial to set set of points. In the case where the order of the

polynomial does not allow an exact fit, a least squares method should be used to obtain the best
fit.

3. Write a program in Scilab (ask if you would prefer to use another platform). The program
should use the Newton-Raphson method to find the zeros of an arbitrary function. The func-
tions below should be used for testing the program. The final program will be tested for
robustness. The final program should be structured.

x2+x+5 =0

5742410 = 0



30. TRIGONOMETRY

Topics:

Objectives:

30.1 Introduction

* Angles degrees and radians

360° = 2nradians

380° = 20° = -340°

60minutes = 60' = 1°

60seconds = 60" = 1'

» Most computers do calculations in radians

page 55
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* Angle quadrants,

quadrant 1

1,

30.1.1 Functions

* The basic trigonometry functions are,

g =Y 1

sinf r cscO

_x_ 1

cost = r secO
tand = ¥ = _1__ smb

Pythagorean Formula:

2

2,2
r=x -ty

* Graphs of these functions are given below,
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Sine - sin A

Cosine - cos A

| | u’/”J—.~\\\\u | u/””—.\\\\\%,.»
270N -180°  S90° 0 90N, 180° A70°  360°  450°
N

Tangent - tan ; A ; ; ;
| | | | |

| | 1 | | |

| | | | |

I | | | |

-270° R0° -J'oo q 9%)0 R0° 27%)o b0° 45%)o

| | | |

| | | |

| | | |

| | | |
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Cotangent -cot

-270 -180° -90 09 90

30.1.2 Inverse Functions

* Inverse Functions

tan_l(J—;) = atan(
asin(

= acos(-

U=
I
(@)

sin

-1
CosS

TN
S I
Il

D
I
an]

=

0

NERS

-——— 5 — — — -
-_———— &5 — — — — -
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Re but the atan® function in rmagnary

Im

calculators and software only returns values between - +/- +/+

90 to 90 degrees. To compensate for this the sign of the real
real and imaginary components must be considered to >
determine where the angle lies. If it lies beyond the -90 -
to 90 degree range the correct angle can be obtained

by adding or subtracting 180 degrees.

Note: recall that tan0 =

* Note: trig calculations can take a while and should be minimized or avoided in programs.

* Scilab example,

sin(3.14159)
asin(0.5)
cos(3.14159)
acos(0.5)
tan(3.14159)
atan(0.5)
atan(1.0, 0.5)

30.1.3 Triangles

* NOTE: Keep in mind when finding these trig values, that any value that does not lie in the right
hand quadrants of cartesian space, may need additions of +90° or +180°.
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Cosine Law:

c2 = a2 + b2—2abcos€)c

Sine Law:

a _ b ¢

sin0 sin0 sin0 -

30.1.4 Relationships

* Now a group of trigonometric relationships will be given. These are often best used when
attempting to manipulate equations.



page 62

sin(0) = sin(0 £360n) nel

sin(—0) = —sin® cos(—0) = cosB tan(—0) = —tan0

sin® = cos(0—90°) = cos(90°—-0) = etc.

sin(0, £0,) = sin0,cos0, £ cosO,;sinB, OR sin(20) = 2sinOcosO

cos(0,£0,) = cosO;cos0, FsinO;sinB, OR cos(20) = (cos@)z—(sin(?))2

tan0, £ tan0,
1 ¥ tan0, tano,

tan(0, £ 0,) = 1+(tane)2 = (sece)2

cotd; cotd, ¥ 1 1+ (coth)? = (csch)?
tan0, * tan0,

sing _ . - ;ose 7 -ve if in left hand quadrants
cos? = + /1+ cosO
2 2

tanQ _ sin© _ 1 - cosH
2 1+ cosO sin©

cot(0,£0,) =

(cose)2 + (sine)2 =1

* Scilab for trig identities,

EXAMPLES OF TRIG IDENTITIES
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* These can also be related to complex exponents,

_ PAREL L AL
cosh) = —— sing = ———
2 2j

30.1.5 Hyperbolic Functions

* The basic definitions are given below,

x -

sinh(x) = e—Te = hyperbolic sine of x
€ +e

cosh(x) = = hyperbolic cosine of x

tanh(x) = sinh(x) _ ¢ —e” _ hyperbolic tangent of x
cosh(x) x4 =~ P 8

csch(x) = ! = 2 = hyperbolic cosecant of x
sinh(x) ¥ _ ™~ P

sech(x) = | = 2 = hyperbolic secant of x
cosh(x) x4 =~ P
cosh(x) €& +e .

th(x) = = = hyperbol t t of
coth(x) smh(x) | yperbolic cotangent of x

* some of the basic relationships are,
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sinh(—x) = —sinh(x)
cosh(—x) = cosh(x)
tanh(—x) = —tanh(x)
csch(—x) = —csch(x)
sech(—x) = sech(x)

coth(—x) = —coth(x)

» Some of the more advanced relationships are,

(coshx)® — (sinhx)> = (sechx)” + (tanhx)® = (cothx)” — (cschx)® = 1
sinh(x £ y) = sinh(x)cosh(y) £ cosh(x)sinh(y)
cosh(x £y) = cosh(x)cosh(y) £ sinh(x)sinh(y)

tanh(x) + tanh(y)
1 + tanh(x)tanh(y)

tanh(x £ y) =

 Some of the relationships between the hyperbolic, and normal trigonometry functions are,

sin(jx) = jsinh(x) jsin(x) = sinh(jx)
cos(jx) = cosh(x) cos(x) = cosh(jx)
tan(jx) = jtanh(x) jtan(x) = tanh(jx)

30.1.6 Special Relationships

* The Small Angle Approximation

sin® = 0 when 0=0
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30.1.7 Planes, Lines, etc.

* The most fundamental mathematical geometry is a line. The basic relationships are given below,

y =mx+b defined with a slope and intercept
_ 1 : ,
Mperpendicular — 7 a slope perpendicular to a line
= y2 _ yl . .
m = X,—X, the slope using two points
X
a +% =1 as defined by two intercepts

« If we assume a line is between two points in space, and that at one end we have a local reference
frame, there are some basic relationships that can be derived.
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Y\
(xzaJ/p Zz)
(xlaylazl)
2 2 2
d = Jty—x)) +0-7) + (52— 7)
» X
(x()a.yOa ZO)
z
The direction cosines of the angles are,
Xy —X — Zy—2Z
0, = acos( 2d 1) 0y = acos(&%) Gy = acos( 2d l)
2 2 2
(cos0,) +(cosGB) +(cosey) =1
The equation of the line is,
X—x Y-y _ Z7Z Explicit

Xp=X%1 V=1 2277
Parametric t=[0,1]

(xaya Z) = (x13y1,21) + t((x25y2: 22)_ (x15y1321))

* The relationships for a plane are,
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)/

The explicit equation for a plane is, b

Ax+By+Cy+D =0 °
Py =121
where the coefficients defined by the intercepts are, N
1 1 1 B ()
A_a B_b C_c D =-1 Py = N V2 22)
@
P= (‘Cjﬂ Y Z ) -

The determinant can also be used,

X=X Y=y Z2—2,

det|x—xy, y—y,z—z, =0

X—X3y—y3Z—23

.'.det[y2 AR Zl] (x—x)+ a’et[Z2 A xl] -y

Y3=YV1 23— 24 Z3—Z1 X3 =X

+ det TR RN (z=2;) =0
X3 =X V3=

The normal to the plane (through the origin) is,

(x,y,z) = t(4,B, C)

30.2 Coordinate Systems

30.2.1 Cylindrical Coordinates
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* Basically, these coordinates appear as if the cartesian box has been replaced with a cylinder,

4 (x,y,2) <> (1,0, 2) A
| |
| |
| Z |
| lz
| |
| >y |
| ST
xy Ty ™ S ¢
2 2
X = rcos9 r=oANxo Ty
y = rsin® 0 = atan(;)

30.2.2 Spherical Coordinates

* This system replaces the cartesian box with a sphere,
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A
(x,y,2) (1,0, ¢)
|
|
| z
|
|
| >y
| /
_____ G
X y
x = rsinBcos¢
y = rsinOsind 0 = atan )_)
z = rcos0
¢ = acos f—)

30.3 Problems

1. For the following angles, 1) indicate the quadrants, i1) write the sine, cosine, and tangent values,
ii1) write an expression for all equivalent angles.

a) 20°

b) 2rad
C) —2rad
d) 2000°

2. Find all of the missing side lengths and corner angles on the two triangles below,
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ans. 14.3°
2.11

53.1°

155.7 5 3

36.9°

10°

3. A line that passes through the point (1, 2) and has a slope of 2. Find the equation for the line,
and for a line perpendicular to it passing through the given point. (ans. y = 2x + a, y = -0.5x+b)

4. Convert the following angles to/from degrees or radians.

to rad.: 30°,280°, 192°5'30" T 14
ans. grad, Enrad, 1.067nrad
S - Im
to deg.: —rad, —rad
o deg 36ra T 250, 105°

5. On a circle with a diameter of 0.5in. what is,

a) the arc length for a 1 rad angle

b) the arc length for a 20 degree angle
¢) the circumference.
d) the angle resulting in a 0.5m arc.

(ans. 0.25in, PI/36 in, 0.5 PI in., 78.7rad.)



page 71

6. If a 30cm radius rotating mass has a rotational rate of 200rpm, how fast is a point at the outside
moving? What angular velocity is required for an outside speed of 2m/s? (ans. 6.28m/s, 6.67

rad/s)

7.Given the (x, y) points below, find the angle

a)
b)
©)

d)

(3,4)
(=3,4)
(3,-4)

(_3’ _4)

(ans. 53°
126°
—53°

-126°

8.Convert the following to a function with the smallest positive angle possible

a)
b)
c)

d)

sin(200°)
tan(—170°)
cos(325°)

cos(3.5nrad)

(ans. —sin(20°)
tan(10°)

cos(35°)

c0s(90°) or sin(0°)

9.Given a triangle ABC find the missing side lengths or angles

04 04

04

Ly Ly
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10. Simplify the following expressions.

(00529)2

sin29( 520 sin29) (ans. = 1)

11.Prove the following

sinfcosO _ (cos@)2 — (sin@)2

a)

tan0 1 - (tan@)
2
. 1 _(cosB)
b) sinf = 1 17 (sn0) (sin0)

©)  (1+(tan®)*)(1 - (sinB)*) = 1
d) sin(6,+0,)—-sin(0,-0,) = 2cos0,sinb,
e)  sin(0,+0,)(—sin(0,—0,)) = (sin(0,))* - (sin(0,))’

f)  tanBsin20 = 2(sind)’

12. Solve the equation,

(cos®)> +2sin® -2 = 0 (ans. 9=

13. Two observers measure the height of a rocket by angle. Calculate the height of the rocket.

46° 57°

1km

(ans. 3162m)
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31. VECTORS

Topics:

Objectives:

31.1 Introduction

* Vectors are often drawn with arrows, as shown below,

head
terminus

A vector is said to have magnitude (length or
strength) and direction.

origin
tail

* Cartesian notation is also a common form of usage.
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becomes

y S j
Ax k}ki

* Vectors can be added and subtracted, numerically and graphically,

A4 =(2,3,4) A+B = (2+7,3+8,4+9)
B =(7,%,9) A-B=(2-7,3-8,4-9)

Parallelogram Law

31.1.1 Dot (Scalar) Product

» We can use a dot product to find the angle between two vectors

0 FieF,
COS =
[F1][F
o aCOS( (2><5>+(4)<3>J
J22+ 4257+ 3
‘a - 22 _ o
S0 = acos((4.47)(6 32.5




page 75

» We can use a dot product to project one vector onto another vector.

z A | = (=3i+4j+5KN

We want to find the component of
force F, that projects onto the
vector V. To do this we first con-
vert V to a unit vector, if we do
not, the component we find will

be multiplied by the magnitude y
of V. >

My = 5 = —=——— = 0.707j +0.707k

Fy = LyeF, = (0707} +0.707k) o (- 3i +4j + SK)N

“Fy = (0)(=3)+(0.707)(4) + (0.707)(5) = 6N

» We can consider the basic properties of the dot product and units vectors.
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Unit vectors are useful when breaking up vector magnitudes and direction. As an exam-
ple consider the vector, and the displaced x-y axes shown below as x’-y’.

y |F| = 10N
b A b
\ Y "

N /

AN / o
N p 45
AN /

/
N | 609

We could write out 5 vectors here, relative to the x-y axis,

X axis = 2§
y axis = 3j
x‘axis = 1i+1j
y‘axis = — 11'+.1]_'
F = 10N£60° = (10c0s60°)i + (10sin60°);
None of these vectors has a magnitude of 1, and hence they are not unit vectors. But, if
we find the equivalent vectors with a magnitude of one we can simplify many tasks.

In particular if we want to find the x and y components of F relative to the x-y axis we
can use the dot product.

A, = 1i+0j (unit vector for the x-axis)

F.= A oF = (1i+0j)[(10c0s60°)i+ (10sin60°);]
= (1)(10c0s60°)+ (0)(10sin60°) = 10Ncos60°

This result is obvious, but consider the other obvious case where we want to project a
vector onto itself,
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F 10co0s60°i+ 10sin60°;j .
Ap = 7 = T - = €0860°] + sin60°/

Incorrect - Not using a unit vector
Fp=FeF
= ((10c0s60°)i + (10sin60°);)  ((10c0s60°)i + (10sin60°);)
= (10c0s60°)(10c0s60°) + (10sin60°)(10sin60°)
= 100((c0s60°)” + (sin60°)*) = 1067
Using a unit vector
Frp=Fel.
= ((10c0s60°)i + (10sin60°);) ® ((c0s60°)i + (sin60°);)
= (10c0s60°)(cos60°) + (10sin60°)(sin60°)
o 2 1 ] 2 —
= 10((c0s60°)” + (sin60°)”") = 10 Correct

Now consider the case where we find the component of F in the x’ direction. Again,
this can be done using the dot product to project F onto a unit vector.

<
Il

¥ cos45°i + sin45°

B!
I

o = Fel, = ((10cos60°)i+ (10sin60°);) e ((cos45°)i + (sin45°);)
= (10c0s60°)(cos45°) + (10sin60°)(sin45°)
= 10(cos60°cos45° + sin60°sin45°) = 10(cos(60° —45°))

Here we see a few cases where the dot product has been applied to find the vector pro-
jected onto a unit vector. Now finally consider the more general case,
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First, by inspection, we can see that the component of V, (projected) in the direction
of V; will be,

‘V2V1| = |V,|cos(6,-0))

Next, we can manipulate this expression into the dot product form,

= |V,|(cos6,cosO, + sin6, sinB,)

= |V,|[(cosB,i+ sinOj) ® (cosO,i+ sinb,j)]
2 1 v 2 2/

- vy y_el
‘2'[|V| 7l - '2‘[\%\%@ R

Or more generally,

V2
P = e = [

VeV,
V| cos(O —e):V[ }
Paleen@mt0 = 1y

VeV,
r.cos(8,-0,) = [m}

*Note that the dot product also works in 3D, and similar proofs are used.
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* In Scilab,

A=[123]
B=[456];
dot = A’*B;

31.1.2 Cross Product

* First, consider an example,

F = (- 6.43i+7.66j + 0k)N

INOTE: note that the cross prod-

d = (2i+0j+0k)m uct here is for the right hand

rule coordinates. If the left

. ) handed coordinate system is
¢ J k used F and d should be

2m Om Om reversed.

—6.43N 7.66 N ON

M=dxF =

.M = (0mON—0m(7.66N))i—~(2mON — 0m(~6.43N)); +
(2m(7.66N) — 0m(—6.43N))k = 15.3k(mN)

NOTE: there are two things to note about the solution. First, it is a vector. Here
there is only a z component because this vector points out of the page, and a
rotation about this vector would rotate on the plane of the page. Second, this
result is positive, because the positive sense is defined by the vector system.
In this right handed system find the positive rotation by pointing your right
hand thumb towards the positive axis (the ‘k’ means that the vector is about
the z-axis here), and curl your fingers, that is the positive direction.

* The basic properties of the cross product are,
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The cross (or vector) product of two vectors will yield a new vector perpendicular
to both vectors, with a magnitude that is a product of the two magnitudes.

v
VixV, = (xlg'+y1]_'+zll_c) X (x24'+y2]_'+22/_c) »2
i j ok
Vl X V2 = xl yl Zl
Xy Vo 2y

VixVy = zy =23+ (21x = x12)] T (X1, = y1x,)k

We can also find a unit vector normal ‘n’ to the vectors ‘V1’ and V2’ using
a cross product, divided by the magnitude.

_ VixV,
n |V1><V2‘

* When using a left/right handed coordinate system,

The positive orientation of angles and moments about an axis can be determined

by pointing the thumb of the right hand along the axis of rotation. The fingers
curl in the positive direction.

y X

y X

* The properties of the cross products are,



page 81

The cross product is distributive, but not associative. This allows us to collect terms
in a cross product operation, but we cannot change the order of the cross product.

ry X F+ ry X F = (r1 + r2) x F DISTRIBUTIVE
r >l<)F #Fxr NOT ASSOCIATIVE
ut

rxF = —(Fxr)

* In Scilab,

function val=crossproduct(A, B) // No function is defined so use the following
val =[A(_2) * B(3) - A(3) * B(2) ;
A(3) * B(1) - A(1) * B(3)
A(D) *B(2) - A(2) * B(D)];

endfunction

31.2 Problems
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32. MATRICES

Topics:

Objectives:

32.1 Introduction

* Matrices allow simple equations that drive a large number of repetitive calculations - as a result
they are found in many computer applications.

» A matrix has the form seen below,

n columns
<—> . . .
If n=m then the matrix is said to be square.
ay, ay ... a, Many applications require square matrices.
We may also represent a matrix as a 1-by-3
yp Ay - Gy m rows for a vector.

G 1m Gom -+ D
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* In Scilab,

A=[123;456;789];//; means next row

123 A(2, 3) // , means next element

A=145¢ ?El:%ZB) // : means a range

789 A, )
A(2, $) // means last row or column
A(S, 2)
// other commands - please use help to explore

these

size(A); // returns the rows, columns, etc of A
ones(A); // fills the matrix with 1s
zeros(A); // fills the matrix with Os
eye(5, 5); // creates a 5x5 identity matrix
diag(A); // gets the diagonal of matrix A
rand()
max()
rank()
cond()
spec()
trace()
// also try
B=[123];
C=[1,2;31];
D=1:0.1:3;
E=[B4];// adds a column to B to make E
F=[C;4];// add a row to C to make F
length(C); // the rows in C
G=A(2:3, 1:2); // extracts a 2x2 from A
H =B. * C; // element wise operation, a 3x3 results
J=B"2; // same as B*B
K =B."2; // each element is squared

32.1.1 Basic Matrix Operations

» Matrix operations are available for many of the basic algebraic expressions, examples are given
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below. There are also many restrictions - many of these are indicated.

345 12 13 14 21
A4=2 B=|67 8| C=1151617 D= || E= 24252
910 11 18 19 20 23
Addition/Subtraction ' -y 5 5., 3412 4+13 5+ 14
A+B = |6+2 7+2 8+2 B+C=16+15 7+16 8+17
9+210+2 11+2 9+18 10+ 19 11+ 20

B+ D = not valid

32 4-2 5-2 3—-12 4-13 5-14
B-A4=|6_27_2 §_2 B+C=1l6-15 7-16 8-17
9-210=-211=-2 9-18 10-19 11 -20

B—D = not valid

3(2) 4(2) 5(2)
4-B = 16(2) 7(2) 8(2)
9(2) 10(2) 11(2)

NG lvy
[E—
NS NI IR
N2 NI NIk

"O1C NIy NI |

(3:21+4-22+5-23)

B-D=|(6-21+7-22+8:23) | D.E =21-24+22-25+23-26
(9-21+10-22+11-23)

(3-12+4-15+5-18) (3-13+4-16+5-19) (3-14+4-17+5-20)
B-C=1|(6-12+7-15+8-18) (6-13+7-16+8-19) (6-14+7-17+8-20)
(9-12+10-15+11-18) (9-13+10-16+11-19) (9-14+10-17+ 11 - 20)

B B D

CD B etc = not allowed (see inverse)

Note: To multiply matrices, the first matrix must have the same number
of columns as the second matrix has rows.



page 85

32.1.2 Determinants

* Determinants give a “'magnitude product’ of a matrix. This can be though of as a general magni-
tude of the matrix.
* To find a determinant the matrix must must be square.

* For a 2 by 2 matrix.

Determinant
B =37 8| _4.]08 4516713 (3)_4.(-6)+5-(-3) =0
10 11 911 9 10
T8 - (7.11)=(8-10) = =3
10 11
681 - (6-11)-(8-9) = -6
911
67 = (6-10)=(7-9) = -3
910

|D|, |E| = not valid (matrices not square)

* For a 3 by 3 matrix

abc
defzaef_bdf+cde
g h i hi gi gh

= a(ei—fh)—b(di—fg)+ c(dh—eg)

* Higher order matrices follow a similar pattern. For example a 4th order matrix has the pattern,

bcd

afch feh egh e fh e fg

e

l,jlg” =aljkl|=bl i k1|*telijl|=d i)k
nop mop mmnp mmn o

mnop
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32.1.3 Transpose

3609
gl = T r 24
47100 D = |21 22 23] E" = |55
5811 %6
32.1.4 Adjoint Matrices
r 1T
7 8] | 6 8 6 7
10 11 10 11 9 10 The matrix. of determinant to
the left is made up by get-
18| = 4 5 35 3 4 ting rid of the row and col-
- 10 11 911 - 910 umn of the element, and
then finding the determi-
45 135 34 nant pf what is left. Note
73 63 67 the sign changes on alter-
L | nating elements.

|ID|| = invalid (must be square)
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32.1.5 Inverse Matrices

» Some Scilab,

D

-1

To solve this equation for
X,y,Z we need to move

X
B to the left hand side. B_l D
Y To do this we use the
z inverse.
B'D
1]
|B]

In this case B is singular, so the

\ inverse is undetermined, and the

matrix is indeterminate.

invalid (must be square)

A=[123;456;,789];
B=[10;11;127;
A’ // transpose

det(A) // determinant
inv(A) // inverse
A”-1// also inverse
spec(A)

[D, X] = bdiag(A)
linsolve(A, B)

A*B

B*A

A + B // will not work
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32.1.6 Identity Matrix

This is a square matrix that is the matrix equivalent to ‘1°.

B-I1=1-B=B
D-I1=1-D=D

B'l.B=1
10 100
[ﬂ,{ }, 01 0l,etc=I
01
001
32.1.7 Eigenvalues

* The eigenvalue of a matrix is found using,

[A-X1l =0

32.1.8 Eigenvectors

32.2 Matrix Applications

32.2.1 Solving Linear Equations with Matrices

* Note: if the determinant of a matrix is 0, the matrix is singular and there is no solution for the
linear equations
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Given,
x+ty =35
2x+3y =8

The equations can be written in matrix form,

21

The solution is found using the inverse,

3 -1 15-8
x:11715:_21 s| _ 10+8 |7
o238 1118 3-2 )
23
* In Scilab,
A=[11:23];
B =[5; 8];
X =1inv(A) * B

X = A\ B; // another way to solve linear equations
r=B - A *x; // The residual should be 0

» We can solve systems of equations using the inverse matrix,
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Given,
2:-x+4-y+3-z=35
9. x+6-y+8-z=17

11-x+13-y+10-z = 12
Write down the matrix, then rearrange, and solve.

-1

2 4 3||x 5 x 2 4 3] |5
9 6 8[|y =17 yl =19 6 8] |7
111310/ |z] |12 111310 |12

* We can solve systems of equations using Cramer’s rule (with determinants),
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Given,
2:-x+4-y+3-z=35
9. x+6-y+8-z=17

11-x+13-y+10-z = 12

Write down the coefficient and parameter matrices,

2 4 3 5
4=19 6 8 B =17
11 13 10 12

Calculate the determinant for A (this will be reused), and calculate the determinants
for matrices below. Note: when trying to find the first parameter ‘x” we replace the
first column in A with B.

5 43

7 6 8

12 13 10
4]

2 5 3
9 7 8
o]
VT

2 45

9 6 7

11 13 12
|4

32.2.2 Gauss-Jordan Row Reduction

* In many ways Gauss-Jordan is a form of substitution based upon rearranging equations into an
upper-right triangular form.
* The general method works top to bottom ......
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Given,
x+ty =35
2x+3y =8

The equations can be written in matrix form,
L 1]|x| _ |5
23 8

eliminate values in the first column by multiplying by a factor and subtracting
from the first row,
L If|x| _ |5
23 8
1 1 i
1 k
1- 52 1-=3| |y
1o |[x] 5
10-0.5 1]

Finally, solve for the values starting with the last row and work towards the top row.

1
2

N =

-0.5y =1 y

lx+1(=2) = 5 x

32.2.3 Cramer’s Rule
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x+ty =35

2x+3y =8

The equations can be written in matrix form,

To find x,

21

51
83 _
:135_28:7
11
23
15
28 _
:83 1202_2
11 B
23

x=det([51;83]) /det([11;23])
y=det([15;28])/det([11;23])
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32.2.4 Triple Product

When we want to do a cross product, followed by a dot product (called the mixed triple
product), we can do both steps in one operation by finding the determinant of the follow-
ing. An example of a problem that would use this shortcut is when a moment is found

about one point on a pipe, and then the moment component twisting the pipe is found
using the dot product.

uxu uz
(dxFysu=|d d, d
F F,F,

32.2.5 Gauss-Siedel

32.3 Problems

1. Perform the vector operations below,

ANS.
1 6 Cross Product A4 xB =
4= B=12 AxB = (-4,17,-10)
: 1 Dot Product A ®B = 4eB = 13
2. Perform the following matrix calculations.
a) ans.
rldelf
labe |gnk not solvable
mnp
b) ab ad—bc
cd

ad—bc
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3. Perform the matrix operations below.

20
-6 3
21
-6 3
2 —1
-6 3
Multipl
wHpLy ANS.
12310
45611 =
7 89|12
Determinant
123
426| <
789
Inverse
-1
123
426 =
789

4. Solve the following equations using matrices,
Sx-2y+4z = -1
6x+7y+5z = -2
2x—-3y+6z = -3

ans.
=6
=12
=0
123[[10 68
456[[11] = |167
78912 266
123
426 =36
789
-1
123 ~0.833 0.167 0.167
426/ = |0.167 —0.333 0.167
789 0.5 0.167 —0.167
ANS.
x=0.273
y=-0.072

z=-0.627
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5. Solve the following system of equations using a) substitution, b) matrices.

x+2y+3z =35 ans. x =-7
x+4y+8z =0 y = 18.75
4x+2y+z =1 z = -85

6. Find the dot product, and the cross product, of the vectors A and B below.

X p ans. A®B = xp+yq+zr
A= B =
g yr—qz
2 " AxXB = |zp—xr
Xq —py
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33. GRAPHING

Topics:

Objectives:

33.1 Introduction

* coordinates

* types - line, bar, scatter, x-y, chart
* curves vs. data

* SCILAB examples
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» With Scilab,

t=[12345];

f=[1491625];

plot2d(t, f);

// pause here and look at the graph
xbasc(); // clears the screen

plot2d(t, f, style=-1, leg="test graph’)
xtitle(’time (min)’);

* Scilab graph styles,

4 Do @
AT OYO P

33.2 Graphing Functions



page 99

* In Scilab,

deffC[y]=f(t)’, [y=%e"(-5*t)’]);
f(2)

t=(0:0.1:10);

fplot2d(t, f);

// OR
t=(0:0.1:10);

y="aeN(-5%1);
plot2d(t, f);

33.3 LOG Plots

* In Scilab,

f=11, 10, 100, 1000, 10000];

G =10, 10, 20, 100, 1000];
plot2d(log10(f), log10(G), style=-1);
// OR

plot2d(f, G, style=-1, logflag="11");

33.4 Multiple Plots
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* In Scilab,
t=1[0:0.1: 6];
y = sin(t) + sin(3 * t);
z = sin(t) + cos(t);

xset(’window’, 0); plot(t, y);
xset(’window’, 1); plot(t, z);

33.5 Other Items of Interest

* In Scilab,

xbasimg(0, *filename.eps);

33.6 Problems

1. Plot the following function using 20 datapoints in Scilab from -10 to 10.

y(t) = ¢ 'sin(30)
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2. Draw a scatter plot in Scilab for the following (x, y) data.
(1,1)(2,3)(2,5) (1,7) (5, 8)

33.7 Challenge Problem

1. Draw a histogram (bar chart) for the following raw data.

1,4,7,3,5,2,4,3,7,9,7,3,4,1,7,5,2,4,3,6,9,5,1,5,2,3,8
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34. PROGRAMMING

Topics:

Objectives:

34.1 Overview

- brief summary of topic(s)
- category: review / fundamental / application / research

34.2 Introduction

» Some useful program elements
- "clear’ empties the screen
- ’exec’ executes a file as a script.
- ’chdir’ changes a working directory
- "getf(’functionfile’) - gets a function from a working directory
- pwd - returns the current working directory
- "xbasc() - clears a graphics window
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* For-loops in Scilab,

for 1=0:0.1:6 // 0 to 6 in 0.1 steps
//'loop code goes here
end

// OR using vectors
V=[0:0.1:6];
for i=V

//'loop code goes here
end

* While-loops in Scilab,

1=0;
while(i <= 5),
1=1+1;
1
end
1
* [f-then in Scilab,

if(_ logical ),
// some code

else
// other code
end
/] >,>=, <, <=, ==, ~= Basic comparisons

// &, |, ~ Basic Boolean operators
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* Functions in Scilab,

function returnval = functionname(argl, arg2)
returnval = argl + arg2;
if(returnval < 0),
returnval = 0;
return
end
endfunction

functionname(5, 3)

* Note that when a function is defined in Scilab it is not actually run. However when the function
is called it will be interpreted.
* Cases in Scilab,

select val,
case 0,
// code
case 1,
// more code
else
break
end

* Printing in Scilab,
mprintf("format string goes here %d %f \n", arg_int, arg float)
1/ %d - integer

/] %f - float
//\n - end of line
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* Inputting values in Scilab,

a = input("input a value for a");

34.3 Examples



page 106

* A simple Scilab Program,

/1

// test.sce

/1

/I A simple program to integrate an accelerating mass
//

// 'To run this in Scilab use 'File' then 'Exec'.
/1

// by: H. Jack Aug 27, 2002

/1

// Set the time length and step size

steps = 100;

t end =10;

delta t=t end/ steps;

// Initial conditions for the motion
pos=[0];

vel=[0];

t=[0];

acc=9.81;

/I Loop to integrate the motion
for i=1:steps,

t=[t;1* delta_t];

vel = [vel; vel($) + acc];

pos = [pos; pos($) + vel($)*delta_t + 0.5*acc*delta_t"2];
end

// Dump the values to the screen
//[t vel pos]

// Graph the values
plot2d(t, [pos vel], [-2, -5], leg="position@velocity");
/' leg - the legend titles
// style - draw lines with marks
// nax - grid lines for the graph
xtitle('Time (s)");

// Write values to a file (delete the existing file first)
unix("del c:\temp\data.txt");
write("c:\temp\data.txt", [t vel pos]);
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* A simple numerical integration of the equations of motion (ME/PDM),

// first_order.sce

/I A first order integration of an accelerating mass
// 'To run this in Scilab use 'File' then 'Exec'.

// by: H. Jack Sept., 16, 2002

/I System component values
mass = 10;
force = 100;

x0=28§; // initial conditions
v0=12;
X=[x0, v0];

// define the state matrix function
// the values returned are [X, V]
function foo=f{(state,t)
foo = [ state($, 2), force/mass]; // d/dt x =v, d/dt v=F/M
endfunction

// Set the time length and step size for the integration

steps = 100;
t start=1;
t end =100;

h=(t end -t start) / steps;

/I Loop for integration
for i=1:steps,
X = [X ; X($,2) + h*f(X, i*h)];

end

printf("The value at the end of first order integration is (X, v) = (%f, %f)\n", ...
X(8.1),
X($.2));

// Explicit equation
function x=position(x0, v0, a0, t)

x = (0.5 * a0 * t"2) + (v0 * t) + x0;
endfunction

function v=velocity(vO0, a0, t)
v=(a0 *t) + vO0;
endfunction
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* Integration continued,

printf("The value with integration is (x, v) = (%f, %f)\n", ...
position(x0, v0, force/mass, t_end), ...
velocity(v0, force/mass, t_end));

//

/I ' The results should be

/I first order integration = (49710, 1002)

// explicit = (51208, 1012)

/1

// The difference is 1498 for position and 10 for velocity. This is relatively small, but
// shows a clear case of the innacuracy of the numerical solutions.

/1

// Note: increasing the number of steps increases the accuracy

//
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* A simple Bode plot example Program (for electricals),

steps_per_dec = 6;
decades = 6;
start_freq =0.1;

// The transfer function
function foo=G(w)

D =%i* w;

foo=(D+5)/(D"2 + 100*D + 10000);
endfunction

fd = mopen("data.txt", "w");

for step = 0:(steps_per_dec * decades),
f=start freq * 10 ~ (step/steps_per_dec);// calculate the next frequency
w=1{* (2 * %pi); // convert the frequency to radians
[gain, phase] = polar(G(w));// get the result and convert to magnitude/angle
gaindb = 20*log10(gain);// convert to dB
phasedeg = 180 * phase / %pi;// convert to degrees
mfprintf(fd, "%f, %f, %t \n", f, gaindb, phasedeg);

end

mclose(fd);

/I 'To graph it directly

D=poly(0,D);

h=syslin('c', (D + 5) / (D2 + 100*D + 10000) );
bode(h, 0.1, 1000, 'Sample Transfer Function');

34.4 Summary

34.5 Problems

1. Write a program that chooses a random number between 1 and 100. A user will then have to
guess the value. Each guess will be given a hint for higher/lower. At the end the game should
report the number of guesses required.

34.6 Challenge Problems
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35. PERMUTATIONS AND COMBINATIONS

Topics:

Objectives:

35.1 Introduction

» Permutations - a count of the variety of sequences
» Combinations - a count of the number of selections

* Probability - The chance something will happen.

35.2 Permutations

« the possible arrangements of objects given,

n = number of source objects

r = number of arranged objects

 Permutations - for exact definitions of not only possibilities, but also order.
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no_ n!
"o (n—r)!
e.g. How many permutations picking 2 cards off a deck (52)
(52)! 52x51x50x%x..
= = 52x51
(52-2)! 50 % 49 x .. 323

* permutations for n unique objects arranged into r spots

n!
(n—r)!
For example 5 objects in 3 spots
5t 5-4-3.2-1 _
(5-3) 2-1 60

* permutations for non-unique objects (using all)

For example consider 3 pairs of objects that will fill 6 spots

W 6 _6:-54-3.2.1_
d\d,\dy! 212121 8

35.3 Combinations

» Combinations - similar to before except order does not mater.

n o n!
o r—!(n—r)! (n choose r)

e.g. How many combinations of the first 2 cards can be picked off the deck

(52)! _ _2x51x50x... _ 52x351
21(52-2)!  (2x1)(50x49x%...) 2
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* Possible outcomes if ’r’ objects are taken from a group of ’n’.

nPr _n(n-1)n-2)..(n—r+1)
r! r!

nCr =

For example consider 2 cars chosen from a set of 4
4.3 _

2-1 6

35.4 Probability

* The chance 'P(A)’ some event ’A’ will happen.
* A way to figure out how chances interact

* Venn diagrams can be useful for describing interactions,

» Mutually Exclusive - Probable events can only happen as one or the other.



page 113

e.g. Only one number from 1 to 6 will come up when rolling a die.

P(A)+P(B)+....= 1 - o

» Not Mutually Exclusive - Probable events can occur simultaneously

e.g. Two dice are rolled to get a number from 2 to 12, the chance that
a 4 will come up is,

P(A or B)=P(A) +P(B)-P(Aand B)=1/6 + 1/6 - 1/36 ~ P(4 U B)

* Independent Probabilities - Events will happen separately
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e.g. The chance of rolling a number >= 3 then <3 on a 6 sided die.

P(A and B) = P(A) * P(B) = (4/6)*(2/6) = 8/36 P(4 N B)

 Dependant Probabilities - The outcome of one event effects the outcome of another event

e.g. The chance a student will pass an exam if they show up (99/100)
and they know the material (7/10)

P(A and B) = P(A) * P(B when A) = (99/100)*(7/10)

* empirical probability - experimentally determine the probability with,

_ # of outcomes

P # of trials

* Probability Density Function

X2

P(x;<x<x,) = I f(x)dx

35.5 Problems

1. The marketing department has asked how many product permutations are possible for a new
product. The product will hold three colored balls. In total there are 6 ball colors available. If balls
must be used in all spots, and ball colors can be used more than once how many permutations are

possible? (ans. 216)
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2. A worker is packing small cereal boxes into a larger box. If the worker is picking from a set of
10 different cereal boxes, but can only place 8 in the larger box, how many combinations are pos-
sible? (ans. 45)

3. An assembly operation places two parts a board. There is a 3% chance that part A is bad, and a
2% chance that part B is bad. What is the chance the board contains a bad part? (ans. 4.94%)

4. How many ways could 5 operators be assigned to 5 workstations? (ans. 120)

5. How many ways could 8 operators be assigned to 5 workstations? (ans. 6720)

6. There are nine product, each a different color. They are to be put into 3 boxes each holding 3
products. a) How many unique package arrangements are possible? b) How many different com-
binations of packaged products are possible if the position does not matter? (ans. a) 362,880 b)
1680)

7. An electronics company will assemble circuit boards with interchangeable components. There
are 3 places to mount the components and there are 5 types of components. Each component type

may only be used once. How many different outcomes are possible? (ans. 60)

8. A toy is being manufactured to have prizes in 2 of 5 slots. How many prize layouts are possi-
ble? (ans. 10)

9. Calculate the following values.

a) ,C3 = (ans. = 35
c) ,C. = 21 r=2

10. There are 8 machines (A to H) waiting to be shipped. 3 of these will be tested.
a) How many combinations are possible?
b) How many of those combinations contain machine C?
c) How many combinations contain A or H, but not both?
d) If 2 trucks are loaded with 4 machines, how many distributions are possible?
e) Resolve part d) if machine A and B are in the same truck.
(ans. a) 56, b) 21, ¢) 30, d) 70, e) 15)

11. A carton contains 12 parts, 4 are red and 8 are green.
a) Find the probability that the first part removed is green.
b) If 3 parts are removed what is the probability that all are red?
c¢) Repeat b) for all green.
d) Repeat b) for one red and 2 green.
(ans. a) 2/3, b) 1/55, c) 14/55, d) 28/165)
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12. Write routines to implement basic functions.



page 117

36. STATISTICS

Topics:

Objectives:

36.1 Introduction

* Descriptive vs. predictive statistics

* Why?

- Because we can’t sample every part.

- Because no matter what we do, no two parts will be the same.

- Because we define a product to meet specifications and we can measure how well it con-
forms.

- Because differences between parts are hard (assignable causes) or impossible (chance
causes) to predict.

- Because we can sample a few and draw conclusions about the whole group.

» What is the objective?
- We want to sample as little data as possible to draw the most accurate conclusions about
the distribution of the values.

* Two type of statistics
- Inductive - Try to get overall variance within group. i.e. assume all of group should con-
form ***WE USE THIS TYPE
- Deductive - Attempt to classify differences that exist within a group (i.e. election polls).
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36.2 Data Distributions

» Showing Differences
- consider Dominos pizza that delivered < 30minutes by tolerance

Delivery times for one night

20 23 27 23 26
GROUPED 16 26 17 29 26
to nearest value 28 26 23 26 31
21 27 29 17 27

ecause data is grouped, 20.7 minutes becomes 21

Pizzas with black olives for 20 days

2

UNGROUPED

4 5
4 4
data 2 3
7 9

W 00 N —
NN = =

7
3
7

We can draw all with a tally sheet

# count freq.
1 I 3
2 11 3
3 11 3
4 I 3
5 I 1
6 I 1
7 11 4
8 I 1
9 I 1
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* In Scilab,

D=[3;7;8;2;5;6;3;2;9;4;5;8];//adataset
min(D); // the minimum value in D

max(D); // the maximum value in D

median(D); // the median value in D

mean(D); // the average value for the samples

find(...); // a function for looking for logical conditions
sum(D); // the sum of all elements in D

36.2.1 Histograms

* Histograms can be used to show these distributions graphically.
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or

or polygon graph

# of pizzas A

per week 20
15 | or cumulative
*this is continuous,
10 | so it is best used for the
delivery times
5 —

delivery time
15 18 21 24 27 30 33 36

» Cumulative distributions can be used to estimate the probability of an event. For example, if in
the graph above we want to know how many pizzas are delivered within 25 minutes, we could
read 10 (approx.) every week off the graph.

» there are typically 10 to 20 divisions in a histogram

* percentages can be used on the right axis, in place of counts.
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36.3 Discrete Distributions

Pick from a finite
sample (and no
replace)

Continuous stream
with sample removal

HYPERGEOMETRIC In terms of In terms of

failures in time

BINOMIAL POISSON

36.3.1 Normal Distribution

* Symbolically

(-’

36.3.2 Hypergeometric Distribution

Hypergeometric

clch?
_ “d>~n-d 1 ; :
P(d) = —————  (probability of d nonconforming in sample n)

cy

n

\basic combinatorial formula

N - number in lot

n - number in sample

D - number nonconforming in lot

d - number nonconforming in sample
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36.3.3 Binomial Distribution

Binomial

! ne o .
P(d) = dT(nﬁ——d—)'(p O)d(q 0) d (probability of d nonconforming)

n - number in sample
d - number nonconforming in sample
po - fraction nonconforming in sample

do - (1 - pp)
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The binomial distribution is based on a simple principle of probability.

If we consider that there is a probability p, that something will fail, there is a probabil-
ity qp = 1 - py that it will pass. In statistical terms, we are looking at all possible

mutually exclusive outcomes (add the probabilities) of the independent probabili-
ties (multiply). Therefore, for a sample size of 1 (=n),

outcome # ‘ possible outcome ‘ probability
1 failure Po
pass do

1
-’-ZP=P0+QOZ@0+Qo) =pot(=py) =1

To take this a step farther, if there are 2 (=n) samples,

outcome # ‘ possible outcome ‘ probability

I both fail P0*Po=Po”

2 first fails, second passes Po*do 2(Podo)
3 first passes, second fails d0*Po

4 both pass qo*q0=q02

2 2 2 2 2
S P =pot2pgdgtag = (pgtge) = (ppt(1-pg))” = (1)" =1
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We can continue in this way, and it will eventually show a pattern emerge in the form.
This can be written as a general equation.

n(n—1) nfzq(2)+n(n— 1)(n—-2)

-1
(Po+40)" = Po+npy o+ 5T P0

3

n-3 n
3 Po q0+...+q0

The coefficients for this method can also be found using pascals triangle. These coeffi-
cients replace the terms in front of the p, and q terms.

n
0 1

1 1 1 This triangle is constructed

b 1 2\;/ 1 by adding the two factors above
3 1 3 3 1

4 4 6 4 1

5 5 10 10 5 1

6 | 1 15 20 15 6 1

We can then use this chart to construct a binomial equation. Say we have a sequence of 4

events, therefor n=4

4 3 22 3 4
1 = (1)P0+(4)P0q0+(6)P0q0+(4)Poqo+(1)40

Now that we have the binomial function, we can estimate the probability of various out-
comes. A table is given for clarity below,

term # meaning probability
0 all four of the cases fail (l)pg

1 three of the cases fail (4)p(3)q0

2 two of the cases fail (6)p§qg

3 one of the cases fail (4)p0q3

4 none of the cases fail (l)qg
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36.3.4 Poisson Distribution

Poisson

¢ - count of nonconforming

npy - total count in sample
e=2.718281828....

(probability of d nonconforming)
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Poisson’s distribution can be used to predict non-related events.

It’s general form is,

1

ZP

We can use a power factor expansion of one of the terms,

m -m
e Xe

I’I’l2 I’I’l3 I’I’l4 I’I’l5
= ltmt =+

+
20 31 41 5!

Substitution leads to the final distribution function,

2 3 4 5
o= e_m(1+m+m—+m Z

g m o )
2! 3! 4! 5!

m2 m3 m4 5
—m —m —m —m —m
| e +me +—e

—m
20 31¢ 1€ €

We can now relate this back to the probability discussed before, and into a general form

“Y P = 1= P0)+P(1)+P(2)+P3)+ ...

. _m -m
~P(n) = o
where,

P(n) = the probability of ‘n’ occurrences

n = the number of occurrences being considered for a probability
m = the expected number of occurrences
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Next, let us consider an example of a soft drink manufacturer that inspects outgoing
bottles to see if the labels are right side up. If the typical number found is 2 per hour
(m=2), what is the probability that less than 4 will occur in one hour (n<4)?

P( <4) = P0)+P(1)+P(2)+P(3)

2 3

. 2 2 270 2 20 2
P <4) =e +2e +2—!e +§e =
36.4 Other Distributions
36.4.1 Polynomial Expansions
* Binomial expansion for polynomials,
(a+x)" =d"+ na" x+ n_(n_—__l_)an—zxz + .+

2!

36.4.2 Discrete and Continuous Probability Distributions

* The Binomial distribution is,

P(m) =% @ptq'H qg=1-p q.p €[0,1]

t<m

» The Poisson distribution is,

A>0

* The Hypergeometric distribution is,
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(V)( : )
t/\n—t
P = —————
(m) =3 (r " S)
t<m n

» The Normal distribution is,

t2

P(x) = — - dt

1
e
J2m

36.5 Continuous Distributions

* Histograms are useful for grouped data, but in the cases where the data is continuous, we use
distributions of probability.

* In general
- the area under the graph = 1.00000.......
- the graphs often stretch (asymptotically) to infinity

* In specific, some of the distribution properties are,

symmetrical skewed

bimodal leptokurtic platykurtic

* In addition the centre of the distribution can vary (i.e. the average or mean)

* More on distribution later
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36.5.1 Describing Distribution Centers With Numbers

* The best known method is the average. This gives the centre of a distribution

n
> X,
i=1

n

for ungrouped numbers X =

where X = average
X; = a data point
n = number of points

h

_ X.

for grouped numbers X = z L
n

i=1

where X = average
/; = the number of matches in range i
X; = the central value for the range 1
h = the number of ranges

n = the number of matches for all ranges

e.g. grouped
e.g. ungrouped
central freq
1,2,3,4 value '
1 2
- 1+2+3+4 3 1
X = — 7 2.5 5 5
8
¥ = 2(1)+1(83)+5(5) _ % _ 375

* Another good measure is the median
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- If odd number of samples it is the middle number
- if an even number of samples, it is the average of the left and right bounding numbers

e.g. odd even
i median
1 ‘/medlan 1 244
2 27 S
3 4 2
7
* If the numbers are grouped the median becomes
n
2]

M,=1L_+ i
d m fm

M ;= median
L,, = lower bound of the range of the median

n = number of samples overall
cf,, = cumulative frequency of all cells below L,,

fm = frequency of median cell
i = cell interval

* Mode can be useful for identifying repeated patterns
- amode is a repeated value that occurs the most. Multiple modes are possible.

g 13293763445
mode =3

36.5.2 Dispersion As A Measure of Distribution

* The range of values covered by a distribution are important

- Range is the difference between the highest and lowest numbers.
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c.g 7831562
range=8-1=7

- the equation is,

s = standard deviation
X~ observed value

X =average

n = number of values

eg. 1276507

¥ = 1+2+7+§+5+0+7 _ 277 _ 4

=}

_ J(l—4)2+(2—4)2+(7—4)2+(6—4)2+(5—4)2+(0—4)2+(7—4)2
7-1

A8.666 = 2.8

» When we use a standard deviation, we can estimate the distribution of the samples.

e.g
X=4
s=2.8
therefore, the range 4-2.8 to 4+2.8 (1.2 to 6.8) will contain
68.26% of the samples

* By adding standard deviations to increase the range size, the percentage of samples included are,
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Assuming a normal

X+5— 68.26%
distribution

25 — 95.46%

35 > 99.73%
etc....

+

X
X

* Other formulas for standard deviation are,

2

i=1

nY X - Y X

* T n(n—1)
h h 2
nY XD - T AX
_ =1 i=1
* n(n—1)

h = number of cells
f; = frequency of values in a cell

36.5.3 The Shape of the Distribution

» Skewed functions
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Note: the distribution

points to the right
hand side.
skewed left normal skewed right

» this lack of symmetry tends to indicate a bias in the data (and hence in the real world)

* a skew factor can be calculated

if a3 = 0 then the distribution is symmetrical (normal)
a3 > 0 then skewed to the right
a3 < 0 then skewed to the left
a3 is not 0 indicates the distribution is not normal.

36.5.4 Kurtosis

* This is a peaking in the data
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|
Mesokurtic (normal) Leptokurtic

Platykurtic

h - 4
[X-X)

27

a4 = 3 mesokurtic
ay > 3 leptokurtic
ay < 3 platykurtic

* This is best used for comparison to other values. i.e. you can watch the trends in the values of a,.

36.5.5 Generalizing From a Few to Many

1. Randomly collect some data
2. Plot data in histogram

very rough and full of
possible inaccuracies

sampl

[ [ 1]
- number of . _ o
samples 3. Find average X, and standard sample deviation s
indreases 4. Repeat steps 1, 2 & 3 until no longer interested.
5. Put together data from earlier samples to get much better distributions
- uncertainty
decreases
\J
population

6. Calculate population mean p and standard deviation ¢
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36.5.6 The Normal Curve

» this is a good curve that tends to represent distributions of things in nature (also called Gaussian)

« This distribution can be fitted for populations (i, c), or for samples (X, s)

frequency
f(Xi) or f(Z2)

/y

XiorZ

1 2
7) = —
) hn

* The area under the curve is 1, and therefore will enclose 100% of the population.

» the parameters vary the shape of the distribution

G or s vari

[t or X varies

* The area under the curve indicates the cumulative probability of some event
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-3o -20 -G porX  +lo +2c +30

the area bounded by range indicates the cumulative
probability. In this case the area = .6826

ut/- 1o = 68.26% of the values bounded
ut/- 2o = 95.46% of the values bounded

between p+lo and p-20 68226 + 2946 _ o1 ¢g  ofthe values are found.

2

*Table A in text gives integrated area under the curve so that
probability may be found.

Fakdik ADD IN MORE TO FIND AREA UNDER DISTRIBUTION

» When applied to quality 3o are used to define a typical “process variability” for the product.
This is also known as the upper and lower natural limits (UNL & LNL)

ckekioskioesiiossieeks LOOK INTO USE OF SYMBOLS, and UNL, LNL, UCL, LCL, etc.

36.5.7 Probability plots
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* Procedure

Data
|

List the data
in order

Add rank numbers
from 1 for the
smallest, then up

rank
Determine percentile pp = 100(i ~0.5),,
for plotting n
total # samples
Select probability
paper for the (Normal in this case)
distribution type

Label the vertical
axis

Plot the points and
fit a line

¢

Conformance to
straight line
determines normality, etc
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10

value

Points side by side
occur twice in data

70q 90 99100

rank %
1 .5/7*100%
2 etc....

9]

O

AN Q0NN O K~
N NN B W

36.6 Problems

1. Write a Scilab program to compute the mean and standard deviation for the data below. It
should then check to see if the values 1.0, 2.0, 3.0 are within +/- 3 standard deviations.
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1.4
2.5
1.1
0.6
1.9
1.0
1.5
0.9
1.6
1.1
1.7
2.0
1.2
1.4
1.8

36.7 Challenege Problems

1. Write a function that generates random numbers that follow a gaussian distribution for an
arbitrary mean and standard deviation. Verify the routine.

2. Use the subroutine to simulate the system described below. A production process consists
of two machines. The first machine takes 3 minutes for an operation with a standard deviation
of 10 seconds. The second machine takes 4 minutes with a standard deviation of 15 seconds.
If the first machine finishes before the second machine, it will have to wait for the second
machine to finish before the job moves on. Use Monte Carlo simulation to estimate the aver-
age cycle time.
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37. RELIABILITY

Topics:
* Reliability of series and parallel system components

* MTBF, MTTF, MTTR, system availability
s FMEA

Objectives:
* To be able to estimate the reliability of a multicomponent system.

37.1 Introduction

* This chapter will assume that a system or component is functional, or not. In practice systems
fail slowly, but we will consider failure to be when they cease being functional.

* No system is perfect and will fail eventually, being able to predict this allows us to determine the
useable life.

* Dependability is a combination of,
- reliability - the probability that a system operates through a given operation specifica-
tion.
- availability - the probability that the system will be available at any instant required.
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* Typical failures follow the following curve.

A
100% _, _;___________; _______________
k | -
| | failed
| |
| |
| |
| |
| |
| |
| |
' | opetating
| |
! ! -
burn 1n failures ~ wear out failures >

37.2 Component Failure Rates

» Failure rate is the expected number of failures per unit time, and is shown with the constant
(lambda), with the units of failures per hour.

* Basically,
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N@)

R(t) = N(0)

where,

N(t) = the number operating at time t

R(t) = the reliability, the portion surviving over the time[#, ¢]
O(1) = 1-R(2)
where,

O(t) = unreliability

* Failures tend (but do not have to) follow exponential failure rate curves. This also suggests a
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failure function.

R(t) A

4

Q

Assume a function, R(t) = —ft
dpiry = _fot
dtR(t) fe
LAN® _
" dIN(0) fR(t)
LAN® _ N
“dtN(0) N(0)
. d _
"dtN(t) fN(t)
o = D
V)

where,

f(t) = the failure rate

* A constant failure rate is the most commonly assumed. When this is the the case the failure rate
is also the Mean Time Before Failure (MTBF). Note that the reliability is also the probability
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that the system will be operational.

11
D =5 = UTBF

t
R(t) — e MTBF

where,

MTBF = Mean Time Before Failure

* Even when the e-to-the-t function is a good model for system failure a system MTBF can be var-

ied during system life by variations in product usage. Example of these include,
- high heat levels

- large loads

- excessive stresses
- "pot holes"

- etc.

d d
Z,‘tR(f) B C—Z;Q(t)

A R0
d d

" - _ER(f) ) EQU)

‘D= %m T 100

where,

z(t) = the failure rate

* The bathtub curve shows typical values for the failure rate.
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z(1) A useful life worn out
carly - >« -
failure
constant stage
failure
rate
t
-
Ly

* The basic reliability equation can be rearranged, eventually leading to a compact expression,

d
dt
R(D)

R(?)

z(t) = —

C%R(t) = Z(H)R(1)

—Iz(t)dt
~R(t) = e

During the useful life of the product, we can approximate the failure rate as linear,
as reflected by the relation below,

j z(¢)dt ~ Mt

SR(1) = ¢ ™ = The Exponential Failure Law

* MTTF (Mean Time To Failure) - this is the expected time before a failure.
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E[X] = j xf(x)dx

00

where,

X = arandom variable

E[X] = expected value

f(x) = aprobability density function

MTTF = fo t(t)dt
0

Given the probability density function, and using integration by parts we can find the
relationship between the MTTF, and reliability.

A = Lo

~MTTF = j:t%Q(t)dt = —J':t(%R(t)dt = [- tR(t)+jR(t)dt]‘: = J':R(t)dt

* The MTTR (Mean Time To Repair) for a system is the average time to repair a system. This is
not simple to determine and often is based on experimental estimates.

MTTR =

Ti=

where,

number of repairs
time period for all repairs

p = the repair rate =

* The MTTF and MTTR both measure the time that the system is running between repairs, and the
time the system is down for repairs. But, they must be combined for the more useful measure
MTBF (Mean Time Before Failure),

MTBF = MTTF + MTTR

* The difference between MTBF and MTTR is often small, but when critical the difference must
be observed.
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» availability is the chance that at any time a system will be operational. This can be determined
experimentally, or estimated. For a system that is into it’s useful lifetime, this can be a good
measure. Note that at the beginning, and end of its life, this value will be changing, and will
not be reliable.

A(t) = to, _  MTTF __ _ MITF _ 1
t,*t, MITF+MTTR MTBF |
1)

where,

A(t) = probability that a system will be available at any time
t, = hours in operation over a time period

t, = hours in repair over a time period

37.3 Serial System Reliabilty

* Fault Coverage is the probability that a system will recover from a failure. This can be derived
approximately by examining the design, and making reliable estimates. This number will be
difficult to determine exactly because it is based on real, and often unpredictable phenomenon.

* Reliability can be determined with individual system components as a function of probabilities.
The two main categories of systems are series, and parallel (redundant). In the best case a high
reliability system would have many parallel systems in series.

* In terms of design, a system designer must have an intuitive understanding of the concept of
series/parallel functions.

» We can consider a series system where if any of the units fails, then the system becomes inoper-
ative. Here the reliabilities of each of the system components is chained (ANDed) together.
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Module 1 Module 2 Module n

— —— I —

Ry(0. 1, Ry(). 2 R, (0.1,

R(1) = (R (D)(Ry(1)-..(R,(1) = [ Ri0)
i=1
where,

R (?) = the reliability of a series system at time t
R,(t) = the reliability of a unit at time ¢

Now, consider the exponential failure law presented before. If each element in a
system observes this law, then we can get an exact value of reliability.

n foit Note: this form
At it i is very nice.
)...(e ") =J[e =

i=1

Mt Ayt

Ry(1) = (e ")(e

37.4 Parallel System Reliability

» When a ’parallel” component fails the reliability of the overall system is reduced, but the system
remains completely or partially functional.

» This type of reliability adds cost, so it is normally only used in critical systems where failure is
not acceptable.

» Examples of systems using parallel reliability include,
- brakes on a car - 4 brakes
- electronic brakes, also have mechanical backups
- lights - in dark places multiple bulbs are used so a failed bulb does not leave it dark.

« If any of the units fails the system will continue to operate. Failure will only come when all of
the modules fail. Here we are concerned with complements of the chained unreliabilities.
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Module 1
L > —@—>
Ry (1), 1
Module 2
o—> —@
Ry(1), &,
Module n
L
R, (1), A\,
! Note: The parallel form
0,(1) = (21 (NN(Qy(0)...(Q,(1) = T] 2D will not result in a sim-
i=1 ple closed form as it
" did with the series
R, (1) = 1=-0,(1) = 1-T](1-R(0)) case.
=1
where, l

O,(t) = the unreliability of a parallel system at time t
Q,(t) = the unreliability of a module at time t
Rp(t) = the reliability of a parallel system at time t
R,(t) = the unreliability of a module at time t
» also consider the case of a parallel system that requires ‘m’ of ‘n’ identical modules to be func-

tional, such as a hybrid system, or a voting system that needs two out of three functional units.
The student will consider the binomial form of the probabilities.
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n—m

Ry = 3 (R (1~ R

i=0

where,
R,,.,(1) = reliability of a system that contains m of n parallel modules

R(t) = the reliability of the modules at time t

!
(’9 = # = the binomial operator (we can also use Pascal‘s triangle)
n—1i)!i

* keep in mind that many systems are a combination of series and parallel units, to find the total
reliability, calculate the reliability of the parallel units first, and then calculate the series reli-
ability, replacing the parallel units with their grouped reliability.

37.5 Formal Analysis Techniques

37.5.1 Failure Modes and Effects Analysis (FMEA)

* Estimates overall reliability of a detailed or existing product design in terms of probability of
failure

* basically, each component is examined for failure modes, and the effects of each failure is con-
sidered. In turn, the effects of these failures on other parts of the system is considered.

» the following is a reasonable FMEA chart.
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Critical Failure Failure Number of | EFFECTS
Components Probability | Mode Failures by
Mode Non
Critical critical

car brakes 1074 disengage 10 1x107-5
(car in motion) engage 5 5x10"-6

weaken 85 X
car brakes 107-6 disengage 40 4x10"-7
(car parked) engage 30 X

weaken 30 X

« the basic steps to filling one out is,

1. consider all critical components in a system. These are listed in the critical items col-
umn.

2. If a component has more than one operation mode, each of these should be considered
individually.

3. estimate failure probability based on sources such as those listed below. Error bounds
may also be included in the FMEA figures when numbers are unsure. These fig-
ures are entered in the “Failure Probability” column.

- historical data for similar components in similar conditions
- published values

- experienced estimates

- testing

- etc.

4. The failures in a particular operation mode can take a number of forms. Therefore, each
mode of failure for a system is considered and its % of total failures is broken
down.

5. In this case the table shows failures divided into critical/non-critical (others are possi-
ble). The effects are considered, and in the event of critical failures the probabili-
ties are listed and combined to get the overall system reliability.

* Suitable applications include,
- analyze single units or failures to target reliability problems.
- identify,
- redundant and fail-safe design requirements
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- single item failure modes
- inspection and maintenance requirements
- components for redesign

* This technique is very complete, but also time consuming.

* not suited to complex systems where cascaded errors may occur.

37.6 References and Bibliography

American Institute of Chemical Engineers, Guidelines for hazard evaluation procedures: with
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Dhillon, B.S., Engineering Design; a modern approach, Irwin, 1996.
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pp. 2020-2031.

Leveson, N., Safeware: system safety and computers, Addison-Wesley Publishing Company Inc.,
1995.

Rasmussen, J., Duncan, K., and Leplat, J., New Technology and Human Error, John Wiley &
Sons Ltd., 1987.

Ullman, D.G., The Mechanical Design Process, McGraw-Hill, 1997.

37.7 Problems

1. How are series and parallel reliability different?
ans. Series reliability means that a failure of any unit will cause the entire group to fail. Parallel
reliability means that there is some redundancy.

2. A set of 4 production machines are running in parallel. The first two machines have a MTBF of
100 hours and a MTTR of 3 hours. The second two machines have a MTBF of 150 hours and a
MTTR of 15 hours. What is the total MTTF for the system?

3. Write a program that will accept test data to determine the Exponential Failure Equation coeffi-
cient. This should then be used to calculate the MTTF.
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4. Write a program that will accept MTTF for multiple components in series, or parallel, and then
calculate the combined MTTF for the system.
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38. CALCULUS

Topics:

Objectives:

38.1 Introduction

38.2 Derivatives

* The basic definition of a derivative is,

gtf(x) = lim S+ Ax) - f(x)

Ax—0 Ax

» First derivatives are often used to get the slope of a function. When this is zero the function may
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be at a minimum/maximum.

A

N | .

* Notations,

\

7\\’

7 \
maxima minima inflection
d
dxy y
d _ .
dty y

* The basic principles of differentiation are,
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Both u, v and w are functions of x, but this is not shown for brevity.

Also note that C is used as a constant, and all angles are in radians.

d oy _
EC(C) =0

d _ d
(Cu) = (O=(w)
d

Lurve.) = 6%C(u)+dii(v)+

Ly = "L ()

L) = @M+ ()@ ~ productrule
409 - (- (o - EOE
dx\v/ V2 dx(u)_ V2 dx(v) - V2

L ) = ()£ w) + @)L () + ()L ()

c%c(y) = c%t(y)c%c(u) chain rule

d. .1
L
a’ux
d
ii_():@(y)
ax?’ " d

CE(X)
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* Examples,

d, 2
Z(F+t+3) = 2¢+
T +143) = 20+ 1

g(t2+t+3) _ 2+l PHi+3
di\ t+2 t+2 (t+2)2

» Differentiation rules specific to basic trigonometry and logarithm functions

d _ 2d
a%(sinu) = (cosu)d%(u) Ec(cotu) = (Fescu) a’x(u)

d d
d B . d —(secu) = (tanusecu)—(u)
E(cosu) = (—smu)a(u) dx dx

1

d =(_ °d d d
gl =\ 5) ) ~(escu) = (~eseucotu) £-(w)

d v ud
€)= () C%C(sinhu) - (coshu)c%(u)

d _
—~(Inx) =

= -

c%c(coshu) = (sinhu)d%(u)

d _ 2d
dx(tanhu) = (sechu) dx(u)

» ’Hospital’s rule can be used when evaluating limits that go to infinity.

) (o) (4) 10

xliina(g(x)) gt (g)g(x) g (g_)zg(x)

» Some techniques used for finding derivatives are,
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Leibnitz’s Rule, (notice the form is similar to the binomial equation) can be used for
finding the derivatives of multiplied functions.

(8w = () ol o () )
D@ @) o @

38.3 Integrals

* Integrals are often referred to as anti-derivatives

* definite integrals have boundaries defines. Indefinitie integrals do not have boundaries defines
and a constant must be added to the result.

* To set up integrals use integration elements (aka slices),

YA

/d_;d—

f(x)

dA = width - height = dx - f(x)
A= jf(x)dx

» Some basic properties of indefinite integrals (no given start and end limits) include,
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In the following expressions, u, v, and w are functions of x. in addition to this, C is a
constant. and all angles are radians.
dex =ax+C
j Cfix)dx = C j f(x)dx
I(u +v+w+ .. )dx = judx+jvdx+jwdx+
judv = uv— J‘va’u = integration by parts

[fcxax = Lffwdn = Cx

[F(ftrydx = jF(u)d%(x)du - j%du u = fix)
n+1

Ixndx = +C J-)lcdx = Inlx| +C

J.axdx=%+C .[exdx=ex+C

* Some of the trigonometric integrals are,
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J-sinxdx = —cosx+C
J-cosxdx = sinx+C
j(sinx)zdx _ smxc<2)sx+x+ C
J-(cosx)zdx _ smxc;sx+x+c
.2
J-(sinx)3dx = - COSX((SI;IX) +2) +C
) 2

j(cosx)3dx _ smx((co;x) +2)+C
J-xcos(ax)dx = %zax) + Z—zsin(ax) +C

a

22

J‘xzcoS(ax)dx = 2xcosz(ax) +22 3_

a a

3xJr sin2x . sindx

4
== + +
I(cosx) dx S 7 D) C
(sinx)n+1
Icosx( sinx)"dx = B +C

I sinhxdx = coshx+C

I coshxdx = sinhx+ C

Itanhxdx = In(coshx)+ C

2 Gin(ax) + C

» Some other integrals of use that are basically functions of x are,
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n+1
n X
.[xdx—n+1+C
[(a+bx)ax @ C

-
[a+bx’) 'ar = —2 (ﬁ+2f)+c,a>0,b<0

2A/(—b)a Ja—xJ=b
Ix(a+bx) dx MJFC
2b
Ixz(a+bx2)_1dx - atan(x ab)JrC
b p.Jab a
2 2,1 (a+x)
I(a x7) dx 2aln p— +C,a >x

[(a+bxy tdx = 2—“";1”‘ e

1

2
Ix(xziaz) dx = /\/xziaz-irC

-1
.[(a+bx+cx2) dx = %ln[Ala+bx+cx2+xAﬂ:+2i[}+C,c>0
c c

-1
I(a +bx + sz) dx = Lasin

{—2cx—b
J-c

}+C,c<0
b2—4ac
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1 3
2, 2 2
j(a+bx) dx = = (a+bx)
1 3
2, _ 2 2
J-(a+bx) dx = 3b(a+bx)
1 3
1 2
J-x(aerx)zdx _ _2(2a—3bx)ga+bx)

156

I
2
In x+(l2 +x2)

1
5 a

1
> x(1+ax) + -
j(1+ax)dx—
2
3
2
L o4
2
J‘x(1+ax)a’x— a3
I
2
1 3 1 lnx+(l2+x2)
2,2 ax 2 2 a

J-x (1+ax ) dx = —(inrxz) —ix(l+ax) —

a 8a 8a3

1

1 o
(1 - abey - g[xu Y+ _<>}

N —
WI
A/
ol—
|
"o
N
o1

J-x(l—ax ) dx = —=

N

1
2.2

Ix (@ —x") dx = _‘(a ~x%) +%[x(a —x) +a asm(;ﬂ

N =

1

2
[(1+a’x") “dr = 1in x+(i2 +x2)
a a

N =

1

2
J-(l —azxz) dx = éasin(ax) = —éacos(ax)
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* Integrals using the natural logarithm base ‘e’,

ax

J-eaxdx =2 4 C
a

ax

jxeaxdx = g—z(ax— +C
a

38.3.1 Integration Examples

* Integration by parts - It is normal to have to do the integration by parts more than once to solve a
problem.

j x° sindxdx

u =
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 Substitution.

2
Itet+ldt
guess
2
w=1f+1 iw—zt dw = 2tdt
dt
jtetzﬂaft:jetz+1 Ie —w——e +C—let+1+C
2

» Partial fractions can be used to reduce complex polynomials to simple to integrate forms.

J-( 25x+10 )dx _
2

x +3x+

38.4 Vectors

» When dealing with large and/or time varying objects or phenomenon we must be able to
describe the state at locations, and as a whole. To do this vectors are a very useful tool.

* Consider a basic function and how it may be represented with partial derivatives.
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y = f(x,y,2)

We can write this in differential form, but the right hand side must contain partial
derivatives. If we separate the operators from the function, we get a simpler form.
We can then look at them as the result of a dot product, and divide it into two vec-
tors.

@y = (e a)ax+ (S 2)dy + (). 2)dz
(d)y = [( (D dx + ( )dy + ( (Ddz}f(x 7,7)

@y = [(Li+ 8—)/_' # 2k o dxi+ dyj + dzB) i 3, 2)

We then replace these vectors with the operators below. In this form we can manipu-
late the equation easily (whereas the previous form was very awkward).

(d)y = [V edX]f(x,,z)
(d)y = Vf(x,y,z) e dX
(d)y = |Vf(x,, 2)||ldX cos®

In summary,

V=_21i+ V e F = the divergence of function F
ax’ ay’ g

V x F = the curl of function F
F = in+Fy/_'+FZl_c

* Gauss’s or Green’s or divergence theorem is given below. Both sides give the flux across a sur-
face, or out of a volume. This is very useful for dealing with magnetic fields.

j(v o F)dV = §>FdA
4 4
where,
V,A = avolume V enclosed by a surface area A

F = afield or vector value over a volume

* Stoke’s theorem is given below. Both sides give the flux across a surface, or out of a volume.
This is very useful for dealing with magnetic fields.
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j(v x F)dA = §>FdL
A L
where,

A, L = A surface area A, with a bounding parimeter of length L

F = afield or vector value over a volume

38.5 Numerical Tools

38.5.1 Approximation of Integrals and Derivatives from Sampled Data

* This form of integration is done numerically - this means by doing repeated calculations to solve
the equation. Numerical techniques are not as elegant as solving differential equations, and
will result in small errors. But these techniques make it possible to solve complex problems
much faster.

* This method uses forward/backward differences to estimate derivatives or integrals from mea-
sured data.
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Yit1 -
Yi-
Yi-1 -

in J/(li)z(yiJr;i_l)(ti_til) = g(yi—’_yifl)

t

i—1

L= (B22) = () = Ly, ) = 2049

L=t Liv1—

1 1
(i)zy(t.) . T(yi+1_yi)_§w(yi_yi71) _ _2yl.+yl.71 +yi+l

T T

38.5.2 Centroids and Moments of Inertia

38.6 Problems

1. Find the following derivatives.

a) i(L) ans. 1

dx\x+1 (x_|_1)2

b) c—?}(etsin(%— 4)) _esin(20—4) + 2¢ " cos (2t — 4)
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2. Solve the following integrals.

a 2t ans. 1 2
) J'e dt ¢+ C

1.
—co0s0 +=sin30+C
b) j(sine + co0s30)do 3

3. Set up an integral and solve it to find the area inside the volume below. The shape is basically a
cone with the top cut off.
z

A y

(ans. 2 2
ca ba abc)
= | — + ==+ ==
v “(3 3 3

(move later) 4. Write a program that integrates the following function using the trapezoidal
rule and Simpson’s rule. The period of integration should range from 0 to 10 seconds. The
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program should compare the numerical results to the exact result.

W(t) = 5¢ + sin(20¢)

// sample program

function foo = y(t)
foo=5*t"2+sin (20 *1t),

endfunction

sum = 0;
h=0.1; // step size
for t=0:h:10
sum = sum + h * (f(t+h) + f(t)) / 2; // uses the trapezoid rule
end

t=10;

actual = (5/3) *t "3 -0.05 * cos(20 * t);

mprintf("integral value numerical = %f, actual = %f \n", sum, actual);
// the value should be 1667 approximately

(move later - near end) 5. Write a program that finds the location of the minimum value for the
function given below.

p(x) = sin(sin(5x%) + cos(20x) — 5x) + (x — 10)°

// sample program
function foo = y(x)

foo = sin(sin(5 * x * x) + cos(20 * x) - 5*x) + (x - 10) " 2;
endfunction

y_min = 100000000000; // something big to start
x_min = 0; // this value doesn’t matter
h =0.001; // step size - also the accuracy
for x =-100:h:100
if (y(x) <y_min), // look for the smallest value

X_min = x;
y_min = y(x);
end

end
X_min, y_min




8. Differentiate.

a)

b)

¢)

d)

2)

h)

)

k)

D

44y
«d)
In(x)
In(x +x°)

X
e

2 3
X+x —x

2
x +5

x3 + 5x

x +5
sin(x7)
¢ sin(x)

sinx
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(ans.

4+ 4

-5
A3 (x + 4)
1

X

3)c2 +1

3
x +x

X
e

2 3
(—3x2+2x+ et
—x2+5
2 2
(x"+5)
—x2+5
2 2
(x"+5)
2xexZJr5
2xcosx2
2 2

2xe" sin(x)+¢e" cos(x)

Xcosx — sinx

2
X
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9. Integrate the following indefinite functions with respect to x.

a) 1 (ans. In(x)+C

X

X
b) x+5 x=5In(x+5)+C
c) ls __12 +C

X 2x

4 23
d) 5.3 1052 1.25x + ¥ +C
e) xex2 lex2 +C
2
f) COSX sinx + C
g (cosx)” w s
10. Solve the following integrals.

9 e tdr (ans

0

0, 3
by [ (F+50)di 12833.33

0

4n
©) j- cos(t)dt 0

0

11. Write a Scilab program that numerically intergrates the following functions.

10
a) J' (7 +50)dt
0

b) JAR cos(t)dt
0
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1. ANALYSIS OF DIFFERENTIAL EQUATIONS

Topics:
» First and second-order homogeneous differential equations
* Non-homogeneous differential equations
* First and second-order responses
* Non-linear system elements
* Design case

Objectives:
* To develop explicit equations that describe a system response.
* To recognize first and second-order equation forms.

1.1 Introduction

In the previous chapter we derived differential equations of motion for translating
systems. These equations can be used to analyze the behavior of the system and make
design decisions. The most basic method is to select a standard input type (a forcing func-
tion) and initial conditions, and then solve the differential equation. It is also possible to
estimate the system response without solving the differential equation as will be discussed
later.

Figure 1.1 shows an abstract description of a system. The basic concept is that the
system changes the inputs to outputs. Say, for example, that the system to be analyzed is
an elevator. Inputs to the system would be the mass of human riders and desired elevator
height. The output response of the system would be the actual height of the elevator. For
analysis, the system model could be developed using differential equations for the motor,
elastic lift cable, mass of the car, etc. A basic test would involve assuming that the elevator
starts at the ground floor and must travel to the top floor. Using assumed initial values and
input functions the differential equation could be solved to get an explicit equation for ele-
vator height. This output response can then be used as a guide to modify design choices
(parameters). In practice, many of the assumptions and tests are mandated by law or by
groups such as Underwriters Laboratories (UL), Canadian Standards Association (CSA)
and the European Commission (CE).
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p uts_» system —0u>tp uts Note: By convention inputs
are on the left, and outputs
forcing i il response are on the right.
function eZZZ fznla function
S~___ v

Figure 1.1 A system with and input and output response

There are several standard input types used to test a system. These are listed below
in order of relative popularity with brief explanations.

* step - a sudden change of input, such as very rapidly changing a desired speed
from OHz to 50Hz.

* ramp - a continuously increasing input, such as a motor speed that increases con-
stantly at I0Hz per minute.

* sinusoidal - a cyclic input that varies continuously, such as wave height that is
continually oscillating at 1Hz.

* parabolic - an exponentially increasing input, such as a motor speed that is 2Hz at
1 second, 4rad/s at 2 seconds, 8rad/s at 3 seconds, etc.

After the system has been modeled, an input type has been chosen, and the initial
conditions have been selected, the system can be analyzed to determine its behavior. The
most fundamental technique is to integrate the differential equation(s) for the system.

1.2 Explicit Solutions

Solving a differential equation results in an explicit solution. This equation pro-
vides the general response as a function of time, but it can also be used to find frequencies
and other characteristics of interest. This section will review techniques used to integrate
first and second-order homogenous differential equations. These equations correspond to
systems without inputs, also called unforced systems. Non-homogeneous differential
equations will also be reviewed.

The basic types of differential equations are shown in Figure 1.2. Each of these
equations is linear. On the left hand side is the integration variable *x’. If the right hand
side is zero, then the equation is homogeneous. Each of these equations is linear because
each of the terms on the left hand side is simply multiplied by a linear coefficient.
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Ax+Bx =0 first-order homogeneous

Ax + Bx = Cf(t) first-order non-homogeneous
AX+Bx+Cx = 0 second-order homogeneous

AX + Bx + Cx = Df(t) second-order non-homogeneous

Figure 1.2 Standard equation forms

A general solution for a first-order homogeneous differential equation is given in
Figure 1.3. The solution begins with the solution of the homogeneous equation where a
general form is guessed’. Substitution leads to finding the value of the coefficient "Y".
Following this, the initial conditions for the equation are used to find the value of the coef-
ficient *X’. Notice that the final equation will begin at the initial displacement, but
approach zero as time goes to infinity. The e-to-the-x behavior is characteristic for a first-
order response.
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r
| Given the general form of a first-order homogeneous equation, |
, A5+ Bx = 0 and X(0) = xp ,
1 Guess a solution form and solve. 1
| _vt _vt initial condition 1
I x = Xe x = —YXe 1
I ~Yt ~Yt 1
| AGYXe ) +B(Xe ) =0 Note: The general form below |
| B is useful for finding almost |
| AN +B =0 all homogeneous equations | 1
1 _ B 1
! A X h(t) = Xe_Yt I
I Therefore the geﬁeral form is, I
1 _Zt 1
I Xp = Xe I
| |
| Next, use the inétial conditions to find the remaining unknowns. |
| 24 1
I Xp = Xe 4 I
1 B |
—=0
| 3 A |
I xO = Xe I
| |
I X =X '
: Therefore the final equation is, :
B
1 ' I
I x(t) = xye I
L HE HI =N BN BN BN BN BN B BN B B BN B B B EE B B B B B BE B B B B B B B B = ‘

Figure 1.3 General solution of a first-order homogeneous equation
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Solve the following differential equation given the initial condition.

i+2x =0 *(0) =3

ans. X(t) = 36_2t

Figure 1.4 Drill Problem: First order homogeneous differential equation

The general solution to a second-order homogeneous equation is shown in Figure
1.5. The solution begins with a guess of the homogeneous solution, and the solution of a
quadratic equation. There are three possible cases that result from the solution of the qua-
dratic equation: different but real roots; two identical real roots; or two complex roots. The
three cases result in three different forms of solutions, as shown. The complex result is the
most notable because it results in sinusoidal oscillations. It is not shown, but after the
homogeneous solution has been found, the initial conditions need to be used to find the

remaining coefficient values.
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Given,
AX+Bx+Cx = 0 x(0) = X and x(0) = Vo

Guess a general equation form and substitute it into the differential equation,
R ._YXYt "—YZX
AV xe’y + Byxe ) + cxe’y = 0

AU%+MD+C=0

Yy = —Bi'\/(B)Z—4(AC) —BiA/BZ—4AC

24 24

Note: There are three possible outcomes of finding the roots of the equa-
tions: two different real roots, two identical real roots, or two complex
roots. Therefore there are three fundamentally different results.

If the values for Y are both real, but different, the general form is,
Rt Rt
Y=R],R2 Xy =X]e +X26
Note: The initial conditions are then used to find the values for X; and X,.

If the values for Y are both real, and identical, the general form is,

Rt Rt

Y:R]’R] Xy =X]e +XZte !

The initial conditions are then used to find the values for X; and X,.

If the values for Y are complex, the general form is,
Y = ota X = X3eo-tcos(a)t+X4)
The initial conditions are then used to find the values of X5 and X,.

Figure 1.5 Solution of a second-order homogeneous equation

As mentioned above, a complex solution when solving the homogeneous equation
results in a sinusoidal oscillation, as proven in Figure 1.6. The most notable part of the
solution is that there is both a frequency of oscillation and a phase shift. This form is very
useful for analyzing the frequency response of a system, as will be seen in a later chapter.
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r--------------------------------1
Consider the situation where the results of a homogeneous solution are the complex
conjugate pair.
Y = R+Cj
This gives the general result, as shown below:
R+ Cj R-Cj
(R+CPE, . (R=Ct

X = A€ 2

Rt Cjt Rt —Cjt
x = X]e +X26 e

. = eRt(X]eC]t-Iere_C]t)

|

|

|

|

|

|

|

|

|

|

|

: x = eRt(X](cos(Ct) + jsin(Ct)) +X2(c0s(—Ct) + jsin(—Ct)))

: x = eRt(X](cos(Ct) + jsin(Ct)) +X2(cos((Cz‘) —jsin(Ct))))

: X = eRt((X] +X,)cos (Ct) + (X, — X y)sin(C1)

b= eRt((X] +X,)cos(Ct) +j(X; —X,)sin(Ct))

! 2.2 ;

i Rm/(XjJer) +j (X =X5) '

I x =e¢ > ((X +X )cos(Ct) +](X 2)Sm(Ct))
: J(XI+X2) +0(X,-X
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1
|
|
|
8

5)

e 2,y - - (00 420, )

X =e ((X] +X2)cos(Ct) +j(X]—X2)sin(

[ 2x 3, B0 42,y )

44X, X
Rty ™1 _2(()(] +X,)cos(Ct) +j(X; ~ X,)sin(Cr))

/4X]X2

(X, +X,) (X, —X,)

R 1 2 N2
X /4X1X2(—005(Ct) ‘f‘]—Sll’l(Cl‘)j
/4X]X2 /4X]X2

Rt (X} - X))
X =e /4X]X200s Ct + atan| ———— (X nge )

Rt
X =e XSCOS(Ct+X4) where, X3 = /4)(1)(2

- o - S
= atan
frequency phase shift 4 X; +X,)

X = e

Figure 1.6 Phase shift solution for a second-order homogeneous differential equation
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Figure 1.7

Note: Occasionally a problem solution might consist of both a sine and cosine term with
the same frequency. These should normally be combined to a single term with a phase
shift as shown below.

Recall the double angle formula,

sin(wz+0) = sinwtcosO + sinBcosmt

This can be written in a more common form,

A(sinwzcos0 + sinBcosw?) = Asin(wz+ 0)
AcosOsinwt+ AsinBcoswt = Asin(wt+ 0)

Bsinwt+ Ccoswt = Asin(wt+ 0
sin® COS® sin(® ) where, B = 4cosH
. B ¢ C = Asin0
cosO sin0
sin@ _ C - (g)
p— = 0 atan B

Consider the example,

3sin5¢+ dcos5t = A/32+4zsin(5t+ atan(g)) — Ssin(5¢+0.927)

Phase shift solution form
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Solve the following differential equation given the initial condition.

fe2iex = 0 X0) =1 #0) =2

it —
ans. X)) = e +3te

Figure 1.8  Drill Problem: Second order homogeneous differential equation

The methods for solving non-homogeneous differential equations builds upon the
methods used for the solution of homogeneous equations. This process adds a step to find
the particular solution of the equation. An example of the solution of a first-order non-
homogeneous equation is shown in Figure 1.9. To find the homogeneous solution the non-
homogeneous part of the equation is set to zero. To find the particular solution the final
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form must be guessed. This is then substituted into the equation, and the values of the

coefficients are found. Finally the homogeneous and particular solutions are added to get

the final equation. The overall response of the system can be obtained by adding the

homogeneous and particular parts. This is acceptable because the equations are linear, and
the principle of superposition applies. The homogeneous equation deals with the response

to initial conditions, and the particular solution deals with the response to forced inputs.

Generally,
Ax + Bx = Cf(¢) x(0) = X
First, find the homogeneous solution as before, in Figure 1.3.
_B,
_ A
Xy = xpe

Next, guess the particular solution by looking at the form of 'f(t) . This step is highly
subjective, and if an incorrect guess is made, it will be unsolvable. When this hap-
pens, just make another guess and repeat the process. An example is given below. In
the case below the guess should be similar to the exponential forcing function.

For example, if we are given

6x +2x = 5e4t
A reasonable guess for the particular solution is,
X =Ce4t by =4Ce4t
p 1 p 1

Substitute these into the differential equation and solve for A.
o +c ]e4t) +2(c ]e4t) ~ 5!

— ) _ 5
24C,+2C, =5 ..C1—2—6
Combine the particular and homogeneous solutions.
2t
x = xp +xh = 2—55€4t+x0e 2

Figure 1.9 Solution of a first-order non-homogeneous equation

The method for finding a particular solution for a second-order non-homogeneous
differential equation is shown in Figure 1.10. In this example the forcing function is sinu-
soidal, so the particular result should also be sinusoidal. The final result is converted into a

phase shift form.
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--------------------------------1
Generally,
AX + Bx + Cx = Df(1) x(0) = X and  x(0) = Vo

1. Find the homogeneous solution as before.

Xy = X3eo-tcos(a)t +X

)
Orx =X eo—t-irX teo—t

or h 1 o ]t 2

X, = X G + X He

2. Guess the particular solution by looking at the form of f(t)". This step is highly sub-
Jjective, and if an incorrect guess is made it will be unsolvable. When this happens,
just make another guess and repeat the process. For the purpose of illustration an
example is given below. In the case below it should be similar to the sine function.

02t

For example, if we are given
2%+ 6x +2x = 2sin(3t+4)

A reasonable guess is,

xp = Asin(3t) + Bcos(3t)
)'cp = 3Acos(3t)—3Bsin(3t)
)'ép —9Asin(3t) —9Bcos(3t)

Substitute these into the differential equation ans solve for A and B.
2(—94sin(3¢) —9Bcos(3¢)) + 6(3A4cos(3¢) —3Bsin(3¢t)) +

2(Asin(3t) + Bcos(3¢)) = 2sin(3¢1+4)

(—184—18B + 2A4)sin(3t) + (—18B + 184 + 2B)cos(3t) = 2sin(3t + 4)

|
(— 164 —18B)sin(3t) + (184 — 16B)cos(3t) = 2(sin3tcos4 + cos3tsin4)l
|
(—164—18B)sin(3t) + (184 —-16B)cos(3t) = (2cos4)sin(3t) + (2sin4)cos(3t) |
— 164 —18B = 2cos4 184—-16B = 2sin4 1
1 |
—16 —18| 4| _ |2cos4||4| _ |-16 —18| |-1.307| _ |-0.0109 1
18 —16||B 2sin4||B 18 —16| |-1.514 0.0823 1
|
Next, rearrange the equation to phase shift form. i
X, = —0.0109sin(3t) + 0.0823 cos(3t) 1
1
2 2 . 0.0823) n)
= A-0. + 0. + + = 1
x, = 4-0.01097+0.08237sin 31 + atan S ) 1 % :
3. Use the initial conditions to determine the coefficients in the homogeneous solution.
--------------------------------‘

Figure 1.10  Solution of a second-order non-homogeneous equation
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When guessing particular solutions, the forms in Figure 1.11 can be helpful.

Forcing Function Guess
A C
Ax + B Cx+D
eAx CeAx or CxeAx
Bsin(Ax) or Bcos(Ax) Csin(Ax) + Dcos(Ax)
or Cxsin(Ax) +xDcos(Ax)

Figure 1.11  General forms for particular solutions
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Solve the following differential equation given the initial condition.
f4 i = W0) =0 50 =0
— —t
ans. X(t) =—e —te +1

Figure 1.12  Drill Problem: Second order non-homogeneous differential equation

An example of a second-order system is shown in Figure 1.13. As expected, it
begins with a FBD and summation of forces. This is followed with the general solution of
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the homogeneous equation. Real roots are assumed thus allowing the problem solution to
continue in Figure 1.14.

| M |
| |
: Assume the system illustrated to the right starts :
from rest at a height "h’. At time t=0’ the sys-
| . F |
tem is released and allowed to move. g
1 ‘ - Yo
I K K, I
| |
I ¢ Mg I
| Z |
| ? My 1
I _ - g I
I ‘#ZFJ/ Mg +Ky+Kp My :
A |
. § d My +Kp+Ky = Mg "
1 Find the homogeneous solution. I
1 At . At ; 2 At 1
. y, = e thAe thAe "
I My +Kp+Ky =0 I
1 24 At At I
1 M| Aze +Kd(Ae )+KS(e ) =0 1
: MA"+KA+K =0 :
! Kt K- MK, l
| A = |
' M '
I Let us assume that the values of M, K ; and K lead to the case of two different I
I positive roots. This would occur if the damper value was much larger than
I the spring and mass values. Thus, I
1 A=R,R I
! IR R, 1
=C ! +C 2
1 YT e 2¢ I
L Il BN BN I BN B B B B B B B B B B B B B B B B B BE B B B B B B B B . ‘

Figure 1.13  Second-order system example

The solution continues by assuming a particular solution and calculating values for
the coefficients using the initial conditions in Figure 1.14. The final result is a second-
order system that is overdamped, with no oscillation.
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Next, find the particular solution.

M(0)+ K 0)+K (C) = Mg
_ Mg
¢ K

Now, add the honiogeneous and particular solutions and solve for the unknowns
using the initial conditions.
Mg Rt R,t
y(t) = Yy Ty = ?+Cle +C,e

N

»©0)=nhr »(0) =0

h = AingCleOJrCzeO
KS
_Mg
K

N

R R
V(1) = R,Cye "+ RyChe ™

0
0= R1C1+R2C2 C, = =—¢C,

R,C\e"+R,C e

R, Mg
_ = + = h_ 2
R1C2 C,=h e

N
c. (Ksh—Mg)( _RIZ) c - —_Rz(Ksh—Mg)( _Rlz)
2
K, R, -R LR, K, R,—R
Now, combine the solutions and solve for the unknowns using the initial conditions.
K h—M, -R —R, /K h— M. —R
y(1) =A£g+( : g)( : eR”+—2( : g)( L) !
K, K, R,—-R R, K, R,-R

W) =j\ig+(Ksh—Mg)( -R, eR1z+(Ksh—Mg)( R, eth
K, K, /\R,—R K, J\R,—R

Figure 1.14  Second-order system example (continued)
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Given,
Asin(ot + 0) (the desired final form)
A(cos wtsin @ + sin ot cos 0)
(Asin 0) cos wt + (A cos 6)sin ot
Beos ot + Csin ot (the form we start with)
where, B = Asin@
C = Acos @
To find theta,
B _ Asin0 _ , o
C Acos@
B
0 = atan(2)
atan|
To find A, (method #1)
4= B _ C

sin@  cos@
To find A, (method #2)

A = /\/B2+C2

For example,

3cosSt + 4sin5t
/\/32 + 42sin(5t + atan%)

Ssin(5t + 0.6435)

Figure 1.15  Proof for conversion to phase form

1.3 Responses

Solving differential equations tends to yield one of two basic equation forms. The
e-to-the-negative-t forms are the first-order responses and slowly decay over time. They
never naturally oscillate, and only oscillate if forced to do so. The second-order forms may
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include natural oscillation.

1.3.1 First-order

A first-order system is described with a first-order differential equation. The
response function for these systems is natural decay or growth as shown in Figure 1.16.
The time constant for the system can be found directly from the differential equation. It is
a measure of how quickly the system responds to a change. When an input to a system has
changed, the system output will be approximately 63% of the way to its final value when
the elapsed time equals the time constant. The initial and final values of the function can
be determined algebraically to find the first-order response with little effort.

If we have experimental results for a system, we can calculate the time constant,
initial and final values. The time constant can be found two ways, one by extending the
slope of the first part of the curve until it intersects the final value line. That time at the
intersection is the time constant. The other method is to look for the time when the output
value has shifted 63.2% of the way from the initial to final values for the system. Assum-
ing the change started at t=0, the time at this point corresponds to the time constant.
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y
A
v - !
07 r y+iy = AD)
(1) :y]+(yo_y])e - T
Vi time constant
. >t Note: The time will be equal to
the time constant when the
value is 63.2% of the way to
y A the final value, as shown
below.
Y !
~ e
y(7) = Y + (J’O—y])e
-1
(o) =y, +g-y)e
Yo
. () =y, +(y-y,)0.368
T t y(r) = 1+(0-1)0.368
y(7) = 0.632

Figure 1.16  Typical first-order responses

The example in Figure 1.17 calculates the coefficients for a first-order differential
equation given a graphical output response to an input. The differential equation is for a
permanent magnet DC motor, and will be examined in a later chapter. If we consider the
steady state when the speed is steady at 1400RPM, the first derivative will be zero. This
simplifies the equation and allows us to calculate a value for the parameter K in the differ-
ential equation. The time constant can be found by drawing a line asymptotic to the start of
the motor curve, and finding the point where it intercepts the steady-state value. This gives
an approximate time constant of 0.8 s. This can then be used to calculate the remaining
coefficient. Some additional numerical calculation leads to the final differential equation
as shown.
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I For the motor, use the differential equation and the speed curve when Vs=10V is applied: |
| 1
| 1400 RPM d (K |
! (o Tr)e = Ga)vs
: e :
I Is 2s 3s I
| For steady-state |
I Ay - B -1 I
I o w =0 w = I1400RPM = 146.6rads I
| _ ( K ) 1
+| = 6 ==
. 0 [ﬁ] 146.6 TR 10 1
1 K = 0.0682 I
| |
! 1400 RPM. _ 1
! 790.8s !
1 ' 1
1 | > 1
| Is |
! [lﬁ’j oL :
I JR 0.8s I
| 0.0682( L) = L 1
I JR)  0.8s [
. K _ 18328 '
| JR |
1 . )i 1
1 w+—w = 18328V 1
0.8 S
1 1
L Il =N I BN BN I BN B B B B B B B B B B B B B B B B B B B B B B B . ‘

Figure 1.17  Finding an equation using experimental data
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Find the differential equation when a step input of Vs=12V is applied:

1800 RPM. (d) +(K2) —(K)V
a " Ur)® T \JR)"s
>

d) : 1800
—lo+—n = ————
ans. (d @015 12(0.15)VS

Figure 1.18  Drill problem: Find the constants for the equation

A simple mechanical example is given in Figure 1.19. The modeling starts with a
FBD and a sum of forces. After this, the homogenous solution is found by setting the non-
homogeneous part to zero and solving. Next, the particular solution is found, and the two
solutions are combined. The initial conditions are used to find the remaining unknown
coefficients.
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r I I I I BN B B B B B B B B B B B B B B B B B B B B B B B B B B . 1
I Find the response to the applied force if the force is applied at F I
I t=0s. Assume the system is initially deflected a height of h. I
[ | 1
| |
. i .
e L
| d K Kd |
F =-F+Ky+K (—) =0 §
: T TK (d) -lAZ y sy d d y :
, Ky d\ 7> Ky+Ky=F .
I Find the homogeneous solution. 1
Bt ) Bt
: vy = Ae yy = ABe :
1 K jaBe”y + K (4™ = 0 !
[ § I
1 KdB + Ks =0 |
| -K |
I B =2 I
| |
I Next, find the particular solution. I
1 - C 5 = () |
' Vb Yp '
1 _ F |
K, (0H)+K (C) = F C = =
' 4(0) T K (C) K '
| Combine the solutions, and find the remaining unknown. |
| K [
! X, !
d F
: y(?) =V, Ty = Ae a :
I (0) = h s I
= + - . = I
1 h Ae X A h e 1
| s S |
I The final solution is, X I
1 <! |
F d F
| y(t)=(h——)e + = |
I Ky Ky I
| |
L I BN B BN BN BN BN BN BN BN BN BN BN B BN BN BN BN BN BN BN BN BN BN BN BN BN BN BN BN B = ‘

Figure 1.19  First-order system analysis example
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Use the general form given below to solve the problem in Figure 1.19 without solving
the differential equation. Assume the system starts at y=-20.

4

yH1W0y =5 _ oy =y ty-ye

a

" 0(t) = 0.5-19.5¢ "

Figure 1.20  Drill problem: Developing the final equation using the first-order model
form

A first-order system tends to be passive, meaning it doesn’t deliver energy or
power. A first-order system will not oscillate unless the input forcing function is also
oscillating. The output response lags the input and the delay is determined by the system’s
time constant.
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1.3.2 Second-order

A second-order system response typically contains two first-order responses, or a
first-order response and a sinusoidal component. A typical sinusoidal second-order
response is shown in Figure 1.21. Notice that the coefficients of the differential equation
include a damping coefficient and a natural frequency. These can be used to develop the
final response, given the initial conditions and forcing function. Notice that the damped
frequency of oscillation is the actual frequency of oscillation. The damped frequency will
be lower than the natural frequency when the damping coefficient is between 0 and 1. If
the damping coefficient is greater than one the damped frequency becomes negative, and
the system will not oscillate because it is overdamped.

A second-order system, and a typical response to a stepped input.

j}+2§a)ny+a)iy = f(t) —» o = §wn ;= a)nm/]—é'z

T, N

A () = 3yt Go-vy)e * cos(ay)

y ad

Yo
>

W Natural frequency of system - Approximate frequency of control
system oscillations.

& Damping factor of system - If < I underdamped, and system will
oscillate. If =1 critically damped. If > 1 overdamped, and never
any oscillation (more like a first-order system). As damping factor
approaches 0, the first peak becomes infinite in height.

@ The actual frequency of oscillation - It is below the natural fre-
quency because of the damping.

Figure 1.21  The general form for a second-order system

When only the damping coefficient is increased, the frequency of oscillation, and
overall response time will slow, as seen in Figure 1.22. When the damping coefficient is 0
the system will oscillate indefinitely. Critical damping occurs when the damping coeffi-
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cient is 1. At this point both roots of the differential equation are equal. The system will
not oscillate if the damping coefficient is greater than or equal to 1.

A
VAR N/ N2 Ny A N A W
>
A
——————————————— — E=0.5
(underdamped)
-
A
——————————————— T =L — 70
2
>
A
——————————————— B & = [ (critical)
(overdamped)
>
A
____________________ ) Enl
>

Figure 1.22  The effect of the damping coefficient

When observing second-order systems it is more common to use more direct mea-
surements of the response. Some of these measures are shown in Figure 1.23. The rise
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time is the time it takes to go from 10% to 90% of the total displacement, and is compara-
ble to a first order time constant. The settling time indicates how long it takes for the sys-
tem to pass within a tolerance band around the final value. The permissible zone shown is
2%, but if it were larger the system would have a shorter settling time. The period of oscil-
lation can be measured directly as the time between peaks of the oscillation, the inverse is
the damping frequency. (Note: don’t forget to convert to radians.) The damped frequency
can also be found using the time to the first peak, as half the period. The overshoot is the
height of the first peak. Using the time to the first peak, and the overshoot the damping
coefficient can be found.

Note: This figure is not to scale to make details
A near the steady-state value easier to see.

1, = rise time (from 10% to 90%)
t, = settling time (to within 2-5% typ.)

0.5 Ax Ax = total displacement
T f d - period and frequency - damped

b = overshoot

0.1A4x tp = time to first peak
» S = steady state error
—ot ~Z
x = Axe cos(a)dt) a)d~t (1)
p
= 2
o fa)n 2)
—ot
Lo—e ? 3)
Ax 1
(tj =

Figure 1.23  Characterizing a second-order response (not to scale)
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Note: We can calculate these relationships using the complex homogenous form, and the
generic second order equation form.

A +2tw, A+ o) =0

L, “2Ew, + 4870 — 4o,

= =octjo,
-2&m o

5 " =0 # -to, ®, = = (1)

480 4.

2 ~ /%

480’ — 40 = 4(-1)o,

2 2 2 2 2
0, -&o, = oy, o,N1-& = o, (2)
62 202 2
2752 T %
g
1 032 g = 1
= - —;’+1 o2 (3)
& (o] —2+1

(¢)

The time to the first peak can be used to find the approximate decay constant

x(t) = Cye % cos(wyt + C,)

(’Od:

(4)

=13

b~Axe (1)

n( 2) 2
tp

c = —

Figure 1.24  Second order relationships between damped and natural frequency
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2.2

2.0 /\v/\v/\\/y(t)

t
-

l4.0 5.0

Write a function of time for the graph. (Note: measure, using a ruler, to get val-
ues.) Find the natural frequency and damping coefficient to develop the dif-
ferential equation. Using the dashed lines determine the settling time.

ans.
t<4  y()=0

t=24  y(t) =

Figure 1.25  Drill problem: Find the equation given the response curve
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1.3.3 Other Responses

First-order systems have e-to-the-t type responses. Second-order systems add
another e-to-the-t response or a sinusoidal excitation. As we move to higher order linear
systems we typically add more e-to-the-t terms, and/or more sinusoidal terms. A possible
higher order system response is seen in Figure 1.26. The underlying function is a first-
order response that drops at the beginning, but levels out. There are two sinusoidal func-
tions superimposed, one with about one period showing, the other with a much higher fre-
quency.

Figure 1.26  An example of a higher order system response

The basic techniques used for solving first and second-order differential equations
can be applied to higher order differential equations, although the solutions will start to
become complicated for systems with much higher orders. The example in Figure 1.27
shows a fourth order differential equation. In this case the resulting homogeneous solution
yields four roots. The result in this case are two real roots, and a complex pair. The two
real roots result in e-to-the-t terms, while the complex pair results in a damped sinusoid.
The particular solution is relatively simple to find in this example because the non-homo-
geneous term is a constant.
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Given the homogeneous differential equation

4 3 2
£ (&) ) e ol
(d) x+13 p x+34d x+42d x + 20x 5

Guess a solution for the homogeneous equation,
X, = eAt
2 At 3 3 At 4 4 At
Lo i (@ (G- (G
d_txh_Ae 67 xh—Ae 7 Xh e p xh e

Substitute the values into the differential equation and find a value for the unknown.
At At At
A e 13858 v 3aacS w24+ 201 = 0

A4+ 13A3 +34A2 +424+20 = 0

A=-1,-10-1-j—1+]
10t

C e_t + Cze_

x, = C + C3e_tcos(t +C

2
Guess a particular solution, and the solve for the coefficient.
2 3 4
o g0 @0 @0 @
P ar” " @0 @ e 0 W

0+ 13(0) + 34(0) + 42(0) + 204 = 5 A =025

=
Il
S

Figure 1.27  Solution of a higher order differential equation

The example is continued in Figure 1.28 and Figure 1.29 where the initial condi-
tions are used to find values for the coefficients in the homogeneous solution.
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Solve for the unknowns, assuming the system starts at rest and undeflected.

x(t) = C]e_t+Cze_101+C3e_tcos(t+C4) +0.25
0=C1+C2+C3c0s(C4)+0.25 (1)
Cjcos(C4) =-C,-C,-025 (2)

d —t —10t —t -t

c—l—txh(t) = —Cle —10C2e —Cje cos(t+C4)—C3e sin(t+ C4)
0 = —C]—]0C2—C3cos(C4)—C3Sin(C4) (3)

Equations (1) and (3) can be added to get the simplified equation below.

C3sin(C4) = -9C,+0.25 (4)

10t

2
d —t — —t ~t .
(67) xh(t) = C]e +]00C2€ +C3e cos(t+C4)+C3e sin(t+C,) +

4

C3e_tsin(t + C4) — C3e_tcos(t + C4)

0= C,;+100C,

0 = C1+100C2+2C35in(C4) (5)
Equations (4) and (5) can be combined.

0 = C] + ]00C2 + 2(— 9C2 +0.25)
0 = ~17C, +100C,+ 0.5 ©)
3
d —t —10t —t . —t
(z) xh(t) = —C]e +(—]000)C2e —2C3e sm(t+C4)+2C3e cos(t+ C
0 = -C,+(-1000)C, —2C4sin(C,) +2C5c0s(Cy) (7)

Figure 1.28  Solution of a higher order differential equation

+ C3cos(C4) + C3Sin(C4) + C3Sin(C4)— C3cos(C
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r HE HI =N BN BN BN BN B B BN B B BN B B B B B B B B B B B B B B B B B B = 1
| Equations (2 and (4) are substituted into equation (7). |
I B I
I 0 =-C;+(=1000)C,=2(=9C, +0.25) + 2(-C; - C, - 0.25) I
1 0 =-3C;+(-984)C,-1 1
I (98 1 (8) I
I ¢, = ()3 !
: Equations (6) and (8) can be combined. :
98 1
I - —17((-2)c,-4) + 0 '
, 0 17 3 C, 3 100C, + 0.5 |
: 0 = 5676C, + 6.1666667 C, = ~0.00109 :
| _ (_984) B 1 _ |
I C] 3 (—0.00109) 3 C] 0.0242 I
1 Equations (2) and (4) can be combined. 1
: Cysin(Cy)  =9C,+0.25 :
I C3c0s(C4) —C]—C2—0.25 1
| tan(C4) _ —9(=0.00109) + 0.25 C4 = _0.760 |
I —(0.0242) — (-0.00109) - 0.25 1
: Equation (4) can be used the find the remaining unknown. :
| C3sin(—0. 760) = —9(-0.00109) + 0.25 C3 = —0.377 |
1 1
| The final response function is, |
: (1) = 0.0242¢ "+ (<0.00109e 17"+ (—0.377)¢ " cos(t - 0.760) + 0.25 :
L HE HI =N BN BN BN BN BN B BN B B BN B B B EE B B B B B BE B B B B B B B B = ‘

Figure 1.29  Solution of a higher order differential equation (cont’d)

In some cases we will have systems with multiple differential equations, or non-
linear terms. In these cases explicit analysis of the equations may not be feasible. In these
cases we may use other techniques, such as numerical integration, which will be covered
in later chapters.

1.4 Response Analysis

Up to this point we have mostly discussed the process of calculating the system
response. As an engineer, obtaining the response is important, but evaluating the results is
more important. The most critical design consideration is system stability. In most cases a
system should be inherently stable in all situations, such as a car "cruise control". In other
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cases an unstable system may be the objective, such as an explosive device. Simple meth-
ods for determining the stability of a system are listed below:

1. If a step input causes the system to go to infinity, it will be inherently unstable.

2. A ramp input might cause the system to go to infinity; if this is the case, the sys-
tem might not respond well to constant change.

3. If the response to a sinusoidal input grows with each cycle, the system is proba-
bly resonating, and will become unstable.

Beyond establishing the stability of a system, we must also consider general per-
formance. This includes the time constant for a first-order system, or damping coefficient
and natural frequency for a second-order system. For example, assume we have designed
an elevator that is a second-order system. If it is under damped the elevator will oscillate,
possibly leading to motion sickness, or worse. If the elevator is over damped it will take
longer to get to floors. If it is critically damped it will reach the floors quickly, without
overshoot.

Engineers distinguish between initial setting effects (transient) and long term
effects (steady-state). The transient effects are closely related to the homogeneous solution
to the differential equations and the initial conditions. The steady-state effects occur after
some period of time when the system is acting in a repeatable or non-changing form. Fig-
ure 1.30 shows a system response. The transient effects at the beginning include a quick
rise time and an overshoot. The steady-state response settles down to a constant amplitude
sine wave.
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Steady-state

/\ Transient

-

Note: the transient response is predicted with the homogeneous solution. The
steady state response in mainly predicted with the particular solution,
although in some cases the homogeneous solution might have steady state
effects, such as a non-decaying oscillation.

Figure 1.30 A system response with transient and steady-state effects

1.5 Non-Linear Systems

Non-linear systems cannot be described with a linear differential equation. A basic
linear differential equation has coefficients that are constant, and the derivatives are all
first order. Examples of non-linear differential equations are shown in Figure 1.31.

X =5

@ Note: the sources of non-

@ linearity are circled.
x =95

Figure 1.31  Examples of non-linear differential equations
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Examples of system conditions that lead to non-linear solutions are,

* aerodynamic drag
» forces that are a squared function of distance
* devices with non-linear responses

Explicitly solving non-linear differential equations can be difficult, and will typi-
cally involve complex solutions for simple problems.

1.5.1 Non-Linear Differential Equations

A non-linear differential equation is presented in Figure 1.32. It involves a person
ejected from an aircraft with a drag force coefficient of 0.8. (Note: This coefficient is cal-
culated using the drag coefficient and other properties such as the speed of sound and
cross sectional area.) The FBD shows the sum of forces, and the resulting differential
equation. The velocity squared term makes the equation non-linear, and so it cannot be
analyzed with the previous methods. In this case the terminal velocity is calculated by set-
ting the acceleration to zero. This results in a maximum speed of 126 kph.
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Consider the differential equation for a 100kg human ejected from an airplane. The
aerodynamic drag will introduce a squared variable, therefore making the equation

non-linear.
2
N ] 2
0.8=5(") B
m \

518x10°m L5)° = 981ms

SF, = 0.8G7)° — Mg = —Mjy

2
100kgy + 0.8 ()" = 100kg9.812Y
2 kg
m
N2
100kgyp + 0.8%()’}) = 98IN
m
2 2
100kgy + 0.8kgL (5" = 981kgL
2 2 2
2

S
100y + 0.8m ! (y')én = 981ms
2

The terminal velocity can be found be setting the acceleration to zero.

(0)+8x10 °m_
981ms °

8x 10 °m

— 9.81ms °
8L 75 = 35.0m = 126k
8x 10 §

Figure 1.32  Development of a non-linear differential equation

The equation can also be solved using explicit integration, as shown in Figure

1.33. In this case the equation is separated and rearranged to isolate the ’v’ terms on the

left, and time on the right. The term is then integrated in Figure 1.34 and Figure 1.35. The

final form of the equation is non-trivial, but contains e-to-t terms, as we would expect.
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An explicit solution can begin by replacing the position variable with a velocity variable
and rewriting the equation as a separable differential equation.

1005 + 0.8m~' (3)” = 981ms™>

100V + 0.8m v = 981ms™>

dv

dt

100% = 981ms °—0.8m 'V’
100

981ms ™ — 0.8m v
100

-1

—0.8m _

w5 = 4
+v

_ImS
—0.8m
J —125m
Vo 1226.25m°s”

100 + 0.8m 1V = 981ms

1
|
|
|
|
|
|
|
|
|
|

Zdv = dt :

|
|
|
|
|
|
|
|
|
|
|
|
J

dv = t+C;

J~ —125m dv = 1+C,

(v + 35. 02@) (v _35. 02@)
) )

Figure 1.33  Developing an integral
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This can be reduced with a partial fraction expansion.

A4 + B dv = t+C

(v + 35. ozﬂ) (v _ 35. 02@)
S S

1

Av—A(35.02@ +Bv + 3(35.02%) = —125m

v(4 +B) +35.022(—4+B) = —125m

A+B =0 ’ A = —-B
35022 (—4 +B) = —125m
: e

—(-B)+B) = B = -1785
CEB*+B) = 505 y
A = 1.785s

1.785s _ —1.785s dv = t+ c,

(v + 35. 02@) (v _ 35. 02@)
) )

The integral can then be solved using an identity from the integral table. In this case
the integration constants can be left off because they are redundant with the one on

_ Inla + bx]

+C

the right hand side.
1.785sIn|v + 35.02™| — 1.785sIn|v — 35.02™| = ¢+ C,
S )
v+ 35.02™ ;
].785SZHTO2’Z = t+C1 .[(a+bx)_ dx
v — . —_
i
m +C
v—35.02™
)
t
v+ 35.02" C, 1.785s
— Sl =e e
v—35.02™
S

Figure 1.34  Solution of the integral
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m t
v+ 35.02—
s| — C261.785s

v— 35022
S

An initial velocity of zero can be assumed to find the value of the integration constant

m 0
0+ 35.02— _

s| _ C261.785s I =0,
0-35.022

S

This can then be simplified, and the absolute value sign eliminated.

v+ 35.022 t

S 1.785s
— 5 = e
v—3502"%

)

t t

v+ 35.02% = +ye! 7 ¢ 35.02%”853

t t
v(] £l 78] = ¢35.02%e”85s—35.02%
t
1.785s —
_ mxe -1 0=3502@(+1_1)=(ﬂ)=9
v = 35.027 ; MRVEY, T+ "2
i - e[.785s
t
m el.785s_1
v = 35.02™
Ky t
1_I_el,7855

Figure 1.35  Solution of the integral and application of the initial conditions

As evident from the example, non-linear equations are involved and don’t utilize
routine methods. Typically the numerical methods discussed in the next chapter are pre-
ferred.

1.5.2 Non-Linear Equation Terms

If our models include a device that is non-linear and we want to use a linear tech-
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nique to solve the equation, we will need to linearize the model before we can proceed. A
non-linear system can be approximated with a linear equation using the following method.

1. Pick an operating point or range for the component.

2. Find a constant value that relates a change in the input to a change in the output.
3. Develop a linear equation.

4. Use the linear equation for the analysis.

A linearized differential equation can be approximately solved using known tech-
niques as long as the system doesn’t travel too far from the linearized point. The example
in Figure 1.36 shows the linearization of a non-linear equation about a given operating
point. This equation will be approximately correct as long as the first derivative doesn’t
move too far from 100. When this value does, the new velocity can be calculated.
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r--------------------------------1
Assume we have the non-linear differential equation below. It can be solved by lin-
earizing the value about the operating point

Given, 5
y +4y = 200 y(0) = 10

We can make the equation linear by replacing the velocity squared term with the
velocity times the actual velocity. As long as the system doesn t vary too much
from the given velocity the model should be reasonably accurate.

|

|

1

|

|

|

|

|

|

|

1

§ = 270y !
y(0) = £J200—-4(10) = £12.65 1

|

12.65y +4y = 20 1

This system may now be solved as a linear differential equation. If the velocity :
(first derivative of y) changes significantly, then the differential equation should I
be changed to reflect this. I
Homogeneous: 1
12659 +4y = 0 :

|

1

|

1

|

|

|

|

|

1

|

|

J

12.654+4 = 0 A = -0316
—0.316¢
Yy = Ce

Particular:
Yp = A
12.65(0) +44 = 200 A = 50

Initial conditions:
—0.316¢ N

y(t) = Ce 50
10 = Ce + 50 C = —40

W) = —40¢ "0 4 50

Figure 1.36  Linearizing a differential equation
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r I I I I BN B B B B B B B B B B B B B B B B B B B B B B B B B B . 1
| If the velocity (first derivative of y) changes significantly, then the differential |
| equation should be changed to reflect this. For example we could decide to I
1 recalculate the equation value after 0.1s. I
| |
I y(0.1) = g0 0310000 5o — 1104 |
| |
d _ -0.316(0.1) _
| c—i—ty(O.]) = —40(-0.316)e = 1225 Noter a small change |
| |
i 12.25y' +4y = 20 1
: Now recalculate the solution to the differential equation. :
| H ] |
. omogeneous: "
I 1225y +4y = 0 |
| 12.254 +g§ 0 A = -0.327 |
| |
| Particular: I
| yp = A |
1 12.25(0)+44 = 200 A = 50 !
| .. . |
i Initial condztzons& 327 I
. y(t)=Ce_'0] Ly so .
| 11.24 = Ce™~ + 50 C = -35.070575 |
: w1y = —35.07¢ 03100 4 50 :
| Notice that the values have shifted slightly, and as the analysis progresses the I
1 equations will adjust slowly. Higher accuracy can be obtained using smaller 1
| steps in time. |
L I I I I IS IS B B B B B B B B B B B B B B B B B B B B BB B B B B . ‘

Figure 1.37  Linearizing a differential equation

1.5.3 Changing Systems

In practical systems, the forces at work are continually changing. For example a
system often experiences a static friction force when motion is starting, but once motion
starts it is replaced with a smaller kinetic friction. Another example is tension in a cable.
When in tension a cable acts as a spring. But, when in compression the force goes to zero.

Consider the example in Figure 1.38. A mass is pulled by a springy cable. The
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right hand side of the cable is being pulled at a constant rate, while the block is free to
move, only restricted by friction forces and inertia. At the beginning all components are at
rest and undeflected.

1 X _ m 1
1 K. = 1000— I
S m
1 Hy = 0.1 %/\/V\—‘ 1
| M = 100kg ]
| Hg 0.3 1
1 7 1
1 An FBD and equation can be developed for the system. The friction force will be left as |1
I a variable at this point. I
| |
| 5 |
I For the cable/spring in tension x 7% S0 1
1 Fr |
1 -+ K (x;—x,) _ _ - 1
. > M = 100kg| S / 72 ZFX —FF+KS(x]—x2) sz "
1 Mx N( m ) _ - 1
I _FF+1000,71 0.];t—x2 = 100kgx, I
I . N N I
| 100kgx 5 + 1000=x , = IOOO—O.IEt—FF |
I m m s I
! SN N, TF !
I 2 kgm 2 “kgs 100kg I
| F 1
- -2 m F
I +1 = 12— |
, X2 0y = IR kg |
s
| For the cable/spring in compression X=Xy < 0 |
i Fr |
! F_=-F, = Mx !
| < | M= 100kg 2 = Fp = Mx, '
| M. . |
| 2 —FF = ]00kgx2 I
I 100kgx , = -F I
I 2y F !
| PO I
1 2 IOOkg 1
L HE HI =N BN BN BN BN BN B BN B B BN B B B EE B B B B B BE B B B B B B B B = ‘

Figure 1.38 A differential equation for a mass pulled by a springy cable
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r m

l K. = 1000 1
! = 0.1 ; " '
I e = 70 | M = 100kg — W\ —e I
| u, =03 |
| Z |
I An FBD and equation can be developed for the system. The friction force will be leftas ¥
I a variable at this point. I
| |
: N = 100kg9.81Y = 981N :

kg

| p |
| oo a. o |
. static friction 272V .
| |
i ON£Fp<pN<2943N I
1 d m 1
: kinetic friction 72 5 :
| Frp =N = 98IN 1
8 J

Figure 1.39  Friction forces for the mass

r HE HI =N BN BN BN BN B B BN B B BN B B B B B B B B B B B B B B B B B B = 1
| The analysis of the system begins by assuming the system starts at rest and undeflected. |
| In this case the cable/spring will be undeflected with no force, and the mass will be I
1 experiencing static friction. Therefore the block will stay in place until the cable 1
I stretches enough to overcome the static friction. 1
| _ A — |
1 X +IOS_2x = Iml‘—i I
I 2 2 3 100kg I
s
I -2 m, 294.3N |
+ 1 = l—=t———
I 0+10s "0 31‘ T00kg I
s
1 jm. _ 294.3kgm I
! 32 !
1 s 100kgs |
I t = 2.943s I
:. Therefore the system is static from 0 to 2.943s .:

Figure 1.40  Analysis of the object before motion begins
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r HE HI =N BN BN BN BN B B BN B B BN B B B B B B B B B B B B B B B B B B = 1
| After motion begins the object will only experience kinetic friction, and continue to 1
1 accelerate until the cable/spring becomes loose in compression. This stage of motion |
1 requires the solution of a differential equation. 1
1 1
| - —2 m, 981N |
+ 10 = ]l—=t——+
1 22 T R Tookg 1
1 § 1
1 For the homogeneous, |
1 - -2 1
I X, 10s ~x 5 = 0 I
: A+ 10572 =0 A = +3.16j5 | :
1 Xy = Clsin(3.]6t+C2) 1
: For the particular, :
I x_ = At+B x =4 x. =0 I
I p p p "
I 0% 10s (A1+B) = 1=t 30 0ke I
I , y 1
1 10s "4 =12 4 =012 I
1 & s 1
1 -2 98.IN I
1 B =—— B = -0.0981
:. Os T00kg 0.0981m ‘|

Figure 1.41  Analysis of the object after motion begins



page 216

For the initial conditions,

X(2.9435) = Om 45(2.9435) = 0™
dt K
x(t) = C,sin(3.16t+ Cy) + 0.1% 1~ 0.0981m
S

0 = C,sin(3.16(2.9435) + C,) + 0.1"(2.9435) ~ 0.0981m
S

C]sin(9.29988 + CZ) = —0.1962
d _ m
th(t) = 3.16C]cos(3.16t + C2) + 0.1;

0 = 3.16C cos(3.16(2.943) + C,) + 0.1%
S
C;c05(9.29988 + C5) = —0.0316
C] sin(9.29988 + CZ)

_ —0.1962
C] cos(9.29988 + C2) -0.0316
tan(9.29988 + C2) = 6.209 C2 = (-7.889 + m)rad n&I

= —0.1962 — 0.199m

C ,
I 5in(9.29988 — 7.889)

x(t) = —0.199msin(3.16t— 7.889rad) + 0.1t — 0.0981m
S

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
d _ m 1
Sx(1) = ~0.199(3.16)mcos (3.16— 7.889rad) + 0.1 |
4

Figure 1.42  Analysis of the object after motion begins
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--------------------------------1
The equation of motion changes after the cable becomes slack. This point in time can
be determined when the displacement of the block equals the displacement of the
cable/spring end.

o.z%z = —0.199msin(3.16t — 7.889rad) + 0.1%— 0.0981m

—0.199msin(3.16t — 7.889rad) = 0.0981m
3.16t—7.889 + mn = —0.51549413 t = 3.328s

x(3.328) = 0.137m d%x(z.sss) = 0.648%

After this the differential equation without the cable/spring is used.

xy = 2N ggm

100kg E

X, = (—0.981@z+c1
S

0.648% = ( 0.981 )(3 3285) + C,

C, = 3.915%
0.981 m
xz—( 5 SQ) +3.913%1+ €,

0.137m = (—@@)(s 3285)° +3.913%(3.3285) + C,
S
C, = ~7.453m
xy(1) = ( @ﬂ)t +3.915% - 7.453m
S

This motion continues until the block stops moving.

0 = (0981 )t+3913—
s
= 3.989s

|
|
|
|
|
|
|
|
|
|
|
|
1
1
|
|
|
|
|
|
|
|
|
|
1
|
1
|
|
|
|
|
|
|
|
|
|
|
|
The solution can continue, considering when to switch the analysis conditions. I
J

Figure 1.43  Determining when the cable become slack
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A typical vibration control system design is described in Figure 1.44.

I

Figure 1.44 A vibration control system

The model to the left describes a piece of

reciprocating industrial equipment. The
mass of the equipment is 10000kg. The
equipment operates such that a force of
1000N with a frequency of 2Hz is exerted
on the mass. We have been asked to design
a vibration isolation mounting system. Thel
criteria we are given is that the mounts 1
should be 30cm high when unloaded, and 1
25c¢m when loaded with the mass. In addi- 1
tion, the oscillations while the machine is 1
running cannot be more than 2cm total. In 1
total there will be four mounts mounted 1
around the machine. Each isolator will be |
composed of a spring and a damper. |

There are a number of elements to the design and analysis of this system, but as
usual the best place to begin is by developing a free body diagram, and a differential equa-
tion. This is done in Figure 1.45.
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r
| |
| F |
1 W ZFy = F-4Ky-4K py + Mg = My ¢ 1
| |
i i M y
1 My +4K p +4K y = F+ Mg |
| |
4K y 4Ky
| . d s F 1
+ + 2 = —_+ ;
I y I W i g 4KSyT 4KdyT v Mg I
| 4K y 4K y — 1
| Gy s L000N om0+ 9.81ms 2 .
I 10000Kg 10000Kg  10000Kg "
| " -1, . -1 -2 . -2 |
I ¥+ 0.0004Kg Kdy + 0.0004Kg Ksy = 0.Ims sin(4nt) + 9.81ms I
L Il BN BN I BN B B B B B B B B B B B B B B B B B BE B B B B B B B B . ‘

Figure 1.45  FBD and derivation of equation

Using the differential equation, the spring values can be found by assuming the
machine is at rest. This is done in Figure 1.46.

e mm Em Em Em Em Em Em Em Em R Em Em Em Em A mm Em Em Em Em Em mm Em Em Em Em E ey
When the system is at rest the equation is simplified; the acceleration and velocity
terms both become zero. In addition, we will assume that the cyclic force is not
applied for the unloaded/loaded case. This simplifies the differential equation by
eliminating several terms.

0.0004Kg 'Ky = 9.81ms "

Now we can consider that when unloaded the spring is 0.30m long, and after loading
the spring is 0.25m long. This will result in a downward compression of 0.05m, in
the positive y direction.

0.0004Kg 'K (0.05m) = 9.81ms >

9.81 -2

K Kgms m

s 0.0004(0.05)
K, = 491KNm™'

Figure 1.46  Calculation of the spring coefficient

The remaining unknown is the damping coefficient. At this point we have deter-
mined the range of motion of the mass. This can be done by developing the particular
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solution of the differential equation, as it will contain the steady-state oscillations caused
by the forces as shown in Figure 1.47.

+ 0.0004Kg 'K j + 0.0004Kg ' (491KNm ™'Yy = 0.1ms sin(47t) + 9.81ms ™
+ 0.0004Kg 'K j + 1965 "y = 0.1ms " sin(47t) + 9.81ms ~

The particular solution can now be found by guessing a value, and solving for the
coefficients. (Note: The units in the expression are uniform (i.e., the same in each
term) and will be omitted for brevity.)

v = Asin(4nt) + Bcos(4nt) + C
V' = 4rAcos(4nt)—4nBsin(4nt)
' = —]67z2Asin(47zt)— 1672'2300S(47ZT)
(~167" Asin(47t) — 167 Bcos (4 xt)) + 0.0004K (474 cos(4t) — 4 zBsin(47t)
+ 196(Asin(4xt) + Becos(4nt) + C) = 0.1sin(4xt) + 9.81
— 167°B + 0.0004K 4 7d + 1964 = 0
B = A(31.8 x10 °K,+ 1.24)

_167°4 + 0.0004K (—47B) + 1964 = 0.1

A(-167° + 196) + B(=5.0 x 10 °K)) = 0.1

A(-167 +196) + A(31.8 x 10 K, + 1.24)(~5.0 x 10 °K ) = 0.1

4 = 2 —06] 3
—167° + 196 + (31.8 x 10 K, + 1.24)(~5.0 x 10K )
_ 0.1
4 == -9 )
KA=159 x107°) + K (6.2 x107) + 38.1
. 3.18 x10°°K,— 0.124

KA=159 x10°) + K (6.2 x 107 + 38.1
C = 98Ims”

r----------------1
L----------------

Figure 1.47  Particular solution of the differential equation

The particular solution can be used to find a damping coefficient that will give an
overall oscillation of 0.02m, as shown in Figure 1.48. In this case Mathcad was used to
find the solution, although it could have also been found by factoring out the algebra, and
finding the roots of the resulting polynomial.
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--------------------------------1
In the previous particular solution the values were split into cosine and sine compo-
nents. The magnitude of oscillation can be calculated with the Pythagorean formula.

magnitude = /\/A2+BZ

2
0.1 + ((3.18 : 10_6)Kd— 0.124)

magnitude = 9 3
Kfl,(—159 210 )+ K (6.2 10 7)) + 38.1
The design requirements call for a maximum oscillation of 0.02m, or a magnitude of
0.01m.

2
/\/(0.])2 + ((3.18 : ]0_6)Kd— 0.124)
0.01 =

Kfi(—159 : 10_9) +K (6.2 10‘3)) +38.1
A given-find block was used in Mathcad to obtain a damper value of,

Kd = 341INZ Aside: the Mathcad solution

m
Jn.m +[(318107%4 - 0.124]

[t l-150.107% ] + e lo6.2.107%) + 381

f(k) =

k=1

giver

flky) = 0.01

find(ly) = 2411 x 107

Figure 1.48  Determining the damping coefficient

The values of the spring and damping coefficients can be used to select actual
components. Some companies will design and build their own components. Components
can also be acquired by searching catalogs, or requesting custom designs from other com-
panies.
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1.7 Summary

» First and second-order differential equations were analyzed explicitly.
» First and second-order responses were examined.

* The topic of analysis was discussed.

* A case study looked at a second-order system.

* Non-linear systems can be analyzed by making them linear.

1.8 Problems

1. The mass, M, illustrated below starts at rest. It can slide across a surface, but the motion is
opposed by viscous friction (damping) with the coefficient B. Initially the system starts at rest,
when a constant force, F, is applied. Write the differential equation for the mass, and solve the

differential equation. Leave the results in variable form.

4>X

-

2. The following differential equation was derived for a mass suspended with a spring. At time Os
the system is released and allowed to drop. It then oscillates. Solve the differential equation to

find the motion as a function of time.

7
+ )
. A SF - Ky Mg - My
K, = 1002 v
(IOO—iDy—(lKg)(QSIK—g) = (-1Kg)y
_ y Nm) .. .
M = 1Kg i (1—2)y+(100—i:9y — 981N
S

(1Kg)j + (100Kg’;’)y - 981822

FBD: A Ky ms s
M

$+ (1005 2)y = 9.81ms
Vo = Oms ™"

*Mg Yo = Om

3. Solve the following differential equation with the three given cases. All of the systems have a
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step input 'y’ and start undeflected and at rest.

4280 oy = y initial conditions X = 0
n n
=0
y=1
case 1: E=05 o,=10
case 2: E=1 o, = 10
case 3: E =2 o, =10

4. Solve the following differential equation with the given initial conditions and draw a sketch of
the first 5 seconds. The input is a step function that turns on at t=0.

0.5V,+0.6V,+2.1V, = 3V,+2 initial conditions ¥, =

1

vV, =
V =

o

S O W

5. Solve the following differential equation with the given initial conditions and draw a sketch of
the first 5 seconds. The input is a step function that turns on at t=0.

0.5V, + 0.6V, +2.1V, = 3V,+2 initial conditions ¥, =

=5
V,=0
vV o=1

o

6. a) Write the differential equations for the system below. Solve the equations for x assuming that
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the system is at rest and undeflected before t=0. Also assume that gravity is present.

7 7 7

Kdl =1 Ns/m
F?‘ Ksl=1N/m Kd =1Ns/m Ii‘—l

¢ <1 M=1kg
Kd2 = INs/m |
F?‘ Ks2=1N/m
FZIN* x‘
¢ 0 Ks=1N/m

F=1IN

7
b) State whether each system is first or second-order. If the system if first-order
find the time constant. If it is second-order find the natural frequency and
damping ratio.

7. Solve the following differential equation with the three given cases. All of the systems have a
sinusoidal input ’y’ and start undeflected and at rest.

) _ ) o .. .
280t tox =y initial conditions x = 0

x =20

y = sin(t)
case 1: E=05 o,=10
case 2: E=1 o, = 10
case 3: £ =2 o, = 10

8. A spring damper system supports a mass of 34N. If it has a spring constant of 20.6N/cm, what
is the systems natural frequency?

9. Using a standard lumped parameter model the weight is 36N, stiffness is 2.06*103 N/m and
damping is 100Ns/m. What are the natural frequency (Hz) and damping ratio?
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10. What is the differential equation for a second-order system that responds to a step input with
an overshoot of 20%, with a delay of 0.4 seconds to the first peak?

11. A system is to be approximated with a mass-spring-damper model using the following param-
eters: weight 28N, viscous damping 6Ns/m, and stiffness 36N/m. Calculate the undamped nat-
ural frequency (Hz) of the system, the damping ratio and describe the type of response you
would expect if the mass were displaced and released. What additional damping would be
required to make the system critically damped?

Mi+Kpg+Kx =F

12. Solve the differential equation below using homogeneous and particular solutions. Assume
the system starts undeflected and at rest.

0+400+200+20 = 4

13. What would the displacement amplitude after 100ms for a system having a natural frequency
of 13 rads/sec and a damping ratio of 0.20. Assume an initial displacement of 50mm, and a
steady state displacement of Omm. (Hint: Find the response as a function of time.)

14. Determine the first order differential equation given the graphical response shown below.
Assume the input is a step function.
X

A

4

| | | I (5
3 4

15. Explain with graphs how to develop first and second-order equations using experimental data.

16. The second order response below was obtained experimentally. Determine the parameters of
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the differential equation that resulted in the response assuming the input was a step function.

A 0.5s
ls >‘
2 i
S Sy A N N - — —p”
10
0y > 1(5)
17. Develop equations (function of time) for the first and second order responses shown below.
X (m)
Sm —
o —
0.ls 025 03s 04s 055 065 075 08 ()
X (m)

Sm—|—
om A /\N AN o~ —

| |
s \/3s N t(s)

-10m
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18. A mass-spring-damper system has a mass of 10Kg and a spring coefficient of 1KN/m. Select a
damping coefficient so that the system will have an overshoot of 20% for a step input.

1.9 Problems Solutions
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homogeneous: uess _ At oy At T 42 At
g g y, = € y, = Ae y,=4Ae

A%+ (1005 e = 0

A% = 1005 A = +10js
v, = Cycos(10t+C,)

particular: guess v, = A v, = 0 v, = 0

(0) + (1005 )4 = 9.81ms >
(1005 2)4 = 9.81ms
-2
4 =285 ,0081m
100s
v, = 0.0981m
initial conditions: y =y, ty, = Cieos(10¢+ Cy) +0.0981m

y = —10C,sin(107 + C,)

for d/dt yO = Om:

0 = -10C,;sin(10(0) + C,) C, =0
for yO = Om:

0 = C,cos(10(0)+ (0)) +0.0981m
~0.0981m = C,cos(0) C, = -0.0981m

y(t) = (~0.0981m)cos(10¢) +0.0981m

case - x(£) = —0.0115¢ ' cos(8.66¢ — 0.524) +0.010

—10¢

case 2! x(f) = —0.010e "' —0.10¢e "' +0.010

case 3: (1) = 775 - 10—66—37.32t_ 0'01086—2.67%_’_ 0.010

V() = —8.465¢ "*'sin(1.960¢ + 1.274) + 8.095

or ~0.61
V(1) = —8.465¢ "% cos(1.960 — 0.2971) + 8.095
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5.
Vo(t) = —8.331e "*cos(1.96—0.238) + 8.095
6.
a) b)
x, () = e —1 _ ~0.51
x(f) = —12.485¢ ~'cos(0.8667—0.524) + 10.81
xy(t) = 2¢ "2
=205 o, =1
T=1
7.
case 1:

x(f) = —0.00117¢'sin(8.66¢ — 1.061) + 0.0101 sin(¢ — 0.101)

case 2l y(4) = (1.96-10 )e " +(9.9-10 )te "+ (9.9 10 )sin(z+0.20)

case 3 y(r) = (3.5-10 )e 7 = (18- 10 %) 2P + (9.4 - 10 )sin(s + 0.382)

8. 24.37 rad/sec

9. fn=3.77Hz, damp.=.575

10.

i+ 8.048% + 77.88x = F(1)
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11.
Given g _ NS kK =36y -2 g5
m § m N
9.81—
kg
The typical transfer function for a mass-spring-damper systems is,
. Kd) (K) F
+x =2 +x =) = =
g X(M W T m
The second order parameters can be calculated from this.
F+3200,) +x(o)) = y(f)
©, = fg = = C et = 3557 — o6
" M 2.85kg s
K
G e
g =5— = ’Z = 0.296
©n 2(3.55)%2.85/@
0, = o Nl -& = 3.395%31
If pulled and released the system would have a decaying oscillation about 0.52Hz
A critically damped system would require a damping coefficient of....
G
M K Ns
g = M _ d = 1.00 K, = 20.2—=
20 rad m
n 2(3.55)72.85kg
12.
0(t) = —66-10 %e " _3216e" % + 1.216e % +2.00
13.

y(t) = 0.05¢ ~'cos(12.741) = O.OSe_2'6tsin(l2.74t+§)



14.

15.
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First-order:

find initial final values

find time constant with 63% or by slope
use these in standard equation

Second-order:

find damped frequency from graph
find time to first peak

use these in cosine equation

A
| | L t6)
0 1 |2 |3 |4
T =1
Given the equation form,
x+ lx = A
T
The values at steady state will be
x=20 x =4
So the unknown ‘A’ can be calculated.
0+ %4 = A A4 =4
X+ -i—x =4
x+tx =4
Key points:
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16.
For the first peak:
b —Gt,
— =e
Ax
i _ —c0.5 ('OdztE
10 P
2
n(2) - o0
n 0 c0.5
2
c = —21n(m) = 3.219 .
For the damped frequency: 5= T \2
—] +1
2n (t G)
== =2
Og = T3 T p

These values can be used to find the damping coefficient and natural frequency

3219
o =to, O =T

0,; = o, 1—&2

3.219
e V17e

2

(3.2;9)2” B éz °°

o - 3219 _ 3219
e 04560

2w = 2

= 0.4560

= 7.059

This leads to the final equation using the steady state value of 10
280, i tox = F
£+2(0.4560)(7.059)% + (7.059)*x = F

X+6.438%+49.83x = F
(0) +6.438(0) +49.83(10) = F £ = 4983

X +6.438x +49.83x = 498.3
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17.

70.693tcos (Ttt)

x(t) = S(I—emJ x(t) = —10e

1.10 Challenge Problems

1. Write a Scilab program to solve first and second order differential equations for step inputs.
The program should accept coefficients for the differential equations and initial conditions. It
should then produce a function of time.
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2. ELECTRICAL AND COMPUTER ENGINEERING
REVIEW

Topics:

Objectives:

2.1 Introductions

2.2 Examples

2.3 Summary

2.4 References/Bibliography
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2.5 Problems

F.E. Chapter 8 - Differential Equations - Problems , 6-11, 14

F.E. Chapter 39 - Complex Numbers and Electrostatics - Problems 1-5
F.E. Chapter 40 - Direct Current Circuits - Problems 1-32

F.E. Chapter 41 - Alternating Current Circuits - Problems 1-17

F.E. Chapter 42 - Three-Phase Systems and Electronics - Problems 1-13

F.E. Chapter 43 - Computer Hardware - Problems 1-17
F.E. Chapter 44 - Computer Software - Problems 1-32

F.E. Chapter 46 - Controls - Problems 1-5

1. Use the loop or node voltage method to write equations for the circuit shown. Write a Scilab
program to solve the circuit as a function of frequency.

C R,
| |
I
R,
+ O ® -
+ o
Vl VO
e O
2.6 Challenge Problems

1. Write a program that would allow the specification of a transfer function using points on a
Bode plot. The transfer function order should be adjusted to allow the number of points specified.
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2. Calculate the output Voltage as a function of the input voltage using Matrices in Scilab

1K
uF
+
+
2K Vo
° O

3. Calculate the output Voltage as a function of the input voltage using State Equations and
numerical methods in Scilab.
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3. MECHANICAL ENGINEERING REVIEW

Topics:

Objectives:

3.1 Introduction

3.2 Examples

3.3 Summary

3.4 References/Bibliography

3.5 Problems
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F.E. Chapter 10 - Systems of Forces - Problems 1-23

F.E. Chapter 11 - Trusses - Problems 1-10

F.E. Chapter 12 - Pulleys, Cables, and Friction - Problems 1-12

F.E. Chapter 13 - Centroids and Momemnts of Inertia - Problems 1-18
F.E. Chapter 18 - Stress and Strain - Problems 1-18
F.E. Chapter 19 - Thermal, Hoop and Torsional Stress - Problems 1-18
F.E. Chapter 20 - Beams - Problems 1-15
F.E. Chapter 21 - Columns - Problems 1-10
F.E. Chapter 36 - Crystallography and Atomic Bonding - Problems 1-8
F.E. Chapter 37 - Material Testing - Problems 1-11
F.E. Chapter 38 - Metallurgy - Problems 1-18

1. Write equationd for the following truss using the method of joints. Enter the equations in a
matrix and use Scilab to find the forces.

v 8 KN * 4 KN *IOKN
3 KN D

—>¢ i
B C
1.5m
E
()::Uv
/2m 2m 7
’4 > >|

3.6 Challenege Problems

1. Write a program to find the deformation of an array of springs (as pictured below) with a
force applied to an internal node. Use a matrix method to solve the problem. Assume that the
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nodes at the four corners are fixed and unable to move.

2. Write the differential equations for one of the following systems. Simulate the system response
using a numerical method, such as Runge-Kutta integration.

L 2
7 7
Ka Ko Ky
L IF L IF | L IF
F
K1 M, Ko M, K,
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4. INDUSTRIAL ENGINEERING OVERVIEW

Topics:

Objectives:

4.1 Introduction

4.2 Examples

4.3 Summary

4.4 References/Bibliography

4.5 Problems
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F.E. Chapter 10 - Systems of Forces - Problems 1-23

F.E. Chapter 11 - Trusses - Problems 1-10

F.E. Chapter 12 - Pulleys, Cables, and Friction - Problems 1-12

F.E. Chapter 13 - Centroids and Momemnts of Inertia - Problems 1-18
F.E. Chapter 18 - Stress and Strain - Problems 1-18
F.E. Chapter 19 - Thermal, Hoop and Torsional Stress - Problems 1-18
F.E. Chapter 20 - Beams - Problems 1-15
F.E. Chapter 21 - Columns - Problems 1-10
F.E. Chapter 36 - Crystallography and Atomic Bonding - Problems 1-8
F.E. Chapter 37 - Material Testing - Problems 1-11
F.E. Chapter 38 - Metallurgy - Problems 1-18

1. The data set below was obtained over a two week period for a 1.000” shaft with a tolerance of
+/- 0.010”. Write a program to automatically update the X-bar, UCL/LCL values given new
values. When a new set of values is entered the program should check to see if the process is in
control. .

Date Samples

Nov., 1, 1994 1.0034” 0.9999” 0.9923” 1.0093”
Nov., 2, 1994 0.9997” 1.0025” 0.9993” 0.9938”
Nov., 3, 1994 1.0001” 1.0009” 0.9997” 1.0079”
Nov., 4, 1994 1.0064” 0.9934” 1.0034” 1.0064”
Nov., 5, 1994 0.9982” 0.9987” 0.9990” 0.9957”
Nov., 6, 1994 0.9946” 1.0101” 1.0000” 0.9974”
Nov., 7, 1994 1.0033” 1.0011” 1.0031” 0.9935”
Nov., 8, 1994 1.0086” 0.9945” 1.0045” 1.0034”
Nov., 9, 1994 0.9997” 0.9969” 1.0067” 0.9972”
Nov., 10, 1994 0.9912” 1.0011” 0.9998” 0.9986”
Nov., 11, 1994 1.0013” 1.0031” 0.9992” 1.0054”
Nov., 12, 1994 1.0027” 1.0000” 0.9976” 1.0038”
Nov., 13, 1994 1.0002” 1.0002” 0.9943” 1.0001”
Nov., 14, 1994 0.9956” 1.0001” 0.9965” 0.9973”
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5. PRODUCT DESIGN AND MANUFACTURING
REVIEW

Topics:

Objectives:

5.1 Introduction

5.2 Examples

5.3 Summary

5.4 References/Bibliography
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5.5 Problems

F.E. Chapter 10 - Systems of Forces - Problems 1-23

F.E. Chapter 11 - Trusses - Problems 1-10

F.E. Chapter 12 - Pulleys, Cables, and Friction - Problems 1-12

F.E. Chapter 13 - Centroids and Momemnts of Inertia - Problems 1-18
F.E. Chapter 18 - Stress and Strain - Problems 1-18
F.E. Chapter 19 - Thermal, Hoop and Torsional Stress - Problems 1-18
F.E. Chapter 20 - Beams - Problems 1-15
F.E. Chapter 21 - Columns - Problems 1-10
F.E. Chapter 36 - Crystallography and Atomic Bonding - Problems 1-8
F.E. Chapter 37 - Material Testing - Problems 1-11
F.E. Chapter 38 - Metallurgy - Problems 1-18

1. Find the forces using Matrices in Scilab.

v 8 KN v 4 KN vIOKN
3 KN D

B C
1.5m
E
<)::(>v
s 2m 7
’4 > >|

5.6 Challenege Problems

1. Write a program to find the deformation of an array of springs (as pictured below) with a
force applied to an internal node. Use a matrix method to solve the problem. Assume that the
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nodes at the four corners are fixed and unable to move.

2. Write the differential equations for one of the following systems. Simulate the system response
using a numerical method, such as Runge-Kutta integration.

L 2
7 7
Ka Ko Ky
L IF L IF | L IF
F
K1 M, Ko M, K,
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2. BOOLEAN LOGIC DESIGN

Topics:
* Boolean algebra

* Converting between Boolean algebra and logic gates
* Logic examples

Objectives:
* Be able to simplify designs with Boolean algebra and Karnaugh maps

2.1 Introduction

Boolean algebra provides the tools needed to analyze and design logical systems.

2.2 Boolean Algebra

Boolean algebra was developed in the 1800’s by James Bool, an Irish mathemati-
cian. It was found to be extremely useful for designing digital circuits, and it is still
heavily used by electrical engineers and computer scientists. The techniques can model a
logical system with a single equation. The equation can then be simplified and/or manipu-
lated into new forms. The same techniques developed for circuit designers adapt very well
to circuit and program.

Boolean equations consist of variables and operations and look very similar to nor-
mal algebraic equations. The three basic operators are AND, OR and NOT; more complex
operators include exclusive or (EOR), not and (NAND), not or (NOR). Small truth tables
for these functions are shown in Figure 2.1. Each operator is shown in a simple equation
with the variables A and B being used to calculate a value for X. Truth tables are a simple
(but bulky) method for showing all of the possible combinations that will turn an output
on or off.
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Note: By convention a false state is also called off or 0 (zero). A true state is also
called on or 1.

AND OR NOT

>
>
>

B
X=4-B X=A+B X=4
A B X A B X A X
0 0 0 0 0 0 0 1
0 1 0 0 1 1 1 0
1 0 0 1 0 1
1 1 1 1 1 1
NAND NOR EOR
A A A
B PX Bo) »X BX—X
X=A4-B X=A+B X=4®B
A B X A B X A B X
0 0 1 0 0 1 0 0 0
0 1 1 0 1 0 0 1 1
1 0 1 1 0 0 1 0 1
1 1 0 1 1 0 1 1 0

Note: The symbols used in these equations, such as + for OR are not universal stan-
dards and some authors will use different notations.

Note: The EOR function is available in gate form, but it is more often converted to
its equivalent, as shown below.

X=A®B=A-B+A4-B

Figure 2.1 Boolean Operations with Truth Tables and Gates

In a Boolean equation the operators will be put in a more complex form as shown
in Figure 2.2. The variable for these equations can only have a value of 0 for false, or 1 for
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true. The solution of the equation follows rules similar to normal algebra. Parts of the
equation inside parenthesis are to be solved first. Operations are to be done in the
sequence NOT, AND, OR. In the example the NOT function for C is done first, but the
NOT over the first set of parentheses must wait until a single value is available. When
there is a choice the AND operations are done before the OR operations. For the given set
of variable values the result of the calculation is false.

given _
X=A+B-C)+4-(B+0O)

assuming A=1, B=0, C=1
X=0+0-1)+1-(0+1)
X=(1+0)+1-(0+0)

(1)+1-(0)
0

SECERS
Il
+

Il
oS O

Figure 2.2 A Boolean Equation

The equations can be manipulated using the basic axioms of Boolean shown in
Figure 2.3. A few of the axioms (associative, distributive, commutative) behave like nor-
mal algebra, but the other axioms have subtle differences that must not be ignored.



plc boolean - 2.248

Idempotent

A+4 =4 A-A=4
Associative

(A+B)+C =A4+(B+C) (A4-B)-C=4-(B-0)
Commutative

A+B =B+4 A-B=B-4
Distributive

A+(B-C)=(A4+B)-(4+0C) A-(B+C)=(4-B)+(4-0)
Identity

A+0 =4 A+1 =1

A-0=0 A-1 =4
Complement

A+4 =1 (A) = 4

A-4=0 1=0
DeMorgan’s

(A+B)=A-B (A4-B) = A+B
Duality

interchange AND and OR operators, as well as all Universal, and Null
sets. The resulting equation is equivalent to the original.

Figure 2.3 The Basic Axioms of Boolean Algebra

An example of equation manipulation is shown in Figure 2.4. The distributive
axiom is applied to get equation (1). The idempotent axiom is used to get equation (2).
Equation (3) is obtained by using the distributive axiom to move C outside the parenthe-
ses, but the identity axiom is used to deal with the lone C. The identity axiom is then used
to simplify the contents of the parentheses to get equation (4). Finally the Identity axiom is
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used to get the final, simplified equation. Notice that using Boolean algebra has shown
that 3 of the variables are entirely unneeded.

A=B-(C-(D+E+C)+F-C)

A=B-(D-C+E-C+C-C+F-C) (1)
A=B-(D-C+E-C+C+F-C) 2)
A=B-C-(D+E+1+F) 3)
4=B-C-(1) (4)
A=B-C ()

Figure 2.4 Simplification of a Boolean Equation

Note: When simplifying Boolean algebra, OR operators have a lower priority, so they
should be manipulated first. NOT operators have the highest priority, so they should be
simplified last. Consider the example from before.

X=(A+B-C)+4-(B+0O) The higher priority operators are

Y- (AJJr—(BC) FA-(B+ C) put in parenthases

_ _ DeMorgan’s theorem is applied
— @) (B-CO)+A4-(B+C) -

_ DeMorgan’s theorem is applied again
+A4-(B+C) 4

The equation is expanded

I
|
i
+
SI

Il
|
ool
_l’_
'
a
_|_
'
oy
_l’_
'
(@

Terms with common terms are
collected, here it is only NOT C

_ _ 4 The redundant term is eliminated

S T
Il Il
| N
ool ool
+ 4+
ar o
A
+ o+
\:5b;
_|_

L 8
_|._
o
o)

I
N
oo
+
Ql
_|._
N
oy

A Boolean axiom is applied to
simplify the equation further
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Note: A simplified expression will generally reduce the number of operations required....

A+BA = A+B

2.3 Logic Design

Design ideas can be converted to Boolean equations directly, or with other tech-
niques discussed later. The Boolean equation form can then be simplified or rearranges,
and then converted into ladder logic, or a circuit.

If we can describe how a controller should work in words, we can often convert it
directly to a Boolean equation, as shown in Figure 2.5. In the example a process descrip-
tion is given first. In actual applications this is obtained by talking to the designer of the
mechanical part of the system. In many cases the system does not exist yet, making this a
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challenging task. The next step is to determine how the controller should work. In this
case it is written out in a sentence first, and then converted to a Boolean expression. The
Boolean expression may then be converted to a desired form. The first equation contains
an EOR, which is not available in ladder logic, so the next line converts this to an equiva-
lent expression (2) using ANDs, ORs and NOTs. The circuit shown is for the second equa-
tion. In the conversion the terms that are ANDed are in series.......... The last equation (3)
is fully expanded and the circuit for it is shown in Figure 2.6. This illustrates the same log-
ical control function can be achieved with different, yet equivalent, circuits.
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Process Description:

A heating oven with two bays can heat one ingot in each bay. When the
heater is on it provides enough heat for two ingots. But, if only one
ingot is present the oven may become too hot, so a fan is used to
cool the oven when it passes a set temperature.

Control Description:
If the temperature is too high and there is an ingot in only one bay then
turn on fan.

Define Inputs and Outputs:

B1 =bay 1 ingot present

B2 = bay 2 ingot present

F =fan

T = temperature overheat sensor
Boolean Equation:

F=T-(B,®B,)
F=T-(B,-B,+B, B, (2)

F=B,-B,-T+B,-B,-T 3)
Circuit for Equation (2):

XXXXXXX

Note: the result for conditional logic
is a single step in the ladder

Warning: in spoken and written english OR and EOR are often not clearly defined. Con-
sider the traffic directions "Go to main street then turn left or right." Does this or mean
that you can drive either way, or that the person isn’t sure which way to go? Consider
the expression "The cars are red or blue.", Does this mean that the cars can be either red
or blue, or all of the cars are red, or all of the cars are blue. A good literal way to
describe this condition is "one or the other, but not both".

Figure 2.5 Boolean Algebra Based Design of Ladder Logic
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Circuit for Equation (3):

XXX XXX XXXXXXXXX

Figure 2.6 Alternate Circuit

Boolean algebra is often used in the design of digital circuits. Consider the exam-
ple in Figure 2.7. In this case we are presented with a circuit that is built with inverters,
nand, nor and, and gates. This figure can be converted into a boolean equation by starting
at the left hand side and working right. Gates on the left hand side are solved first, so they
are put inside parentheses to indicate priority. Inverters are represented by putting a NOT
operator on a variable in the equation. This circuit can’t be directly converted to ladder
logic because there are no equivalents to NAND and NOR gates. After the circuit is con-
verted to a Boolean equation it is simplified, and then converted back into a (much sim-
pler) circuit diagram.
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o

L
—

O »w O W @

o)

The circuit is converted to a Boolean equation and simplified. The most nested terms
in the equation are on the left hand side of the diagram.

=(({4-B-C)+B)-B-(4+C)

X
X=(A+B+C+B)-B-(4-0)
X=A-B-A-C+B-B-A-C+C-B-A-C+B-B-4-C
X=B-A-C+B-A-C+0+B-4-C

X=B-A-C

This simplified equation is converted back into a circuit.

>

M
o

Figure 2.7  Reverse Engineering of a Digital Circuit

To summarize, we will obtain Boolean equations from a verbal description or
existing circuit or ladder diagram. The equation can be manipulated using the axioms of
Boolean algebra. after simplification the equation can be converted back into a circuit dia-
gram. Circuits can behave the same even though they are in different forms. When simpli-
fying Boolean equations that are to be implemented in circuits there are a few basic rules.

1. Eliminate NOTs that are for more than one variable. This normally includes
replacing NAND and NOR functions with simpler ones using DeMorgan’s the-
orem.
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2. Eliminate complex functions such as EORs with their equivalent.

These principles are reinforced with another design that begins in Figure 2.8.
Assume that the Boolean equation that describes the controller is already known. This
equation can be converted into both a circuit diagram and ladder logic. The circuit dia-
gram contains about two dollars worth of integrated circuits. If the design was mass pro-
duced the final cost for the entire controller would be under $50. The prototype of the
controller would cost thousands of dollars.

Given the controller equation;

A=B-(C-(D+E+C)+F-C)

The circuit is given below, and equivalent ladder logic is shown.

e —

c L

o0

The gates can be purchased for
about $0.25 each in bulk.
Inputs and outputs are
typically 5V

Figure 2.8 A Boolean Equation and Derived Circuit

The initial equation is not the simplest. It is possible to simplify the equation to the
form seen in Figure 2.8.
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A=B-C-(D+E+F)
D

E

— o .,
C

; —c— |

Figure 2.9 The Simplified Form of the Example

The equation can also be manipulated to other forms that are more routine but less
efficient as shown in Figure 2.10. The equation shown is in disjunctive normal form - in
simpler words this is ANDed terms ORed together. This is also an example of a canonical
form - in simpler terms this means a standard form. This form is more important for digital
logic. For example, when an equation is simplified, it may not look like the original design
intention, and therefore becomes harder to rework without starting from the beginning.

A= (B-C-D)+(B-C-E)+(B-C-F)

—Pacamn s

D——] =0 )
S
—
|/

P — o

Figure 2.10 A Canonical Logic Form

2.3.1 Boolean Algebra Techniques

There are some common Boolean algebra techniques that are used when simplify-
ing equations. Recognizing these forms are important to simplifying Boolean Algebra
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with ease. These are itemized, with proofs in Figure 2.11.

A+CA = A+C proof:
AB+A4 =4 proof:
m = ABC proof:

A+ CA
(A+C)(A+A)
(4+C)(1)
A+C

AB+ 4
AB+ Al
A(B+1)
A(D)

Y

A+B+C
(A+B)+C
(4+B)C
(AB)C
ABC

Figure 2.11  Common Boolean Algebra Techniques

2.4 Common Logic Forms

Knowing a simple set of logic forms will support a designer when categorizing
control problems. The following forms are provided to be used directly, or provide ideas

when designing.

2.4.1 Complex Gate Forms

In total there are 16 different possible types of 2-input logic gates. The simplest are
AND and OR, the other gates we will refer to as complex to differentiate. The three popu-
lar complex gates that have been discussed before are NAND, NOR and EOR. All of these
can be reduced to simpler forms with only ANDs and ORs, as shown in Figure 2.12.
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NAND NOR EOR
X=A4-B X=A+B X=A®B
X=A+B X=A4-B X=4-B+4-B

Figure 2.12  Conversion of Complex Logic Functions

2.4.2 Multiplexers

Multiplexers allow multiple devices to be connected to a single device. These are
very popular for telephone systems. A telephone switch is used to determine which tele-
phone will be connected to a limited number of lines to other telephone switches. This
allows telephone calls to be made to somebody far away without a dedicated wire to the
other telephone. In older telephone switch boards, operators physically connected wires
by plugging them in. In modern computerized telephone switches the same thing is done,
but to digital voice signals.

In Figure 2.13 a multiplexer is shown that will take one of four inputs bits D1, D2,
D3 or D4 and make it the output X, depending upon the values of the address bits, A1 and
A2.
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— Al A2 | X
D1 multiplexer
0 0 X=DlI
=
D2 7 X 0 1 X=D2
L e 1 0 X=D3
1 1 X=D4
—>
D3
—>
D4

Al A2

Figure 2.13 A Multiplexer

2.5 Simple Design Cases

The following cases are presented to illustrate various combinatorial logic prob-
lems, and possible solutions. It is recommended that you try to satisfy the description
before looking at the solution.

2.5.1 Basic Logic Functions

Problem: Develop a program that will cause output D to go true when switch A
and switch B are closed or when switch C is closed.
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Solution:
D=(A-B)+C

Figure 2.14  Sample Solution for Logic Case Study A

Problem: Develop a program that will cause output D to be on when push button A
is on, or either B or C are on.

Solution:

D=A+B®C)

Figure 2.15  Sample Solution for Logic Case Study B

2.5.2 Car Safety System

Problem: Develop a circuit for a car door/seat belt safety system. When the car
door is open, and the seatbelt is not done up, the ignition power must not be applied. If all
is safe then the key will start the engine.
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Solution:

Figure 2.16  Solution to Car Safety System Case

2.5.3 Motor Forward/Reverse

Problem: Design a motor controller that has a forward and a reverse button. The
motor forward and reverse outputs will only be on when one of the buttons is pushed.
When both buttons are pushed the motor will not work.

Solution:
BF - BR where,

L F = motor forward

BF - BR R = motor reverse
BF = forward button
BR = reverse button

=
|

Figure 2.17  Motor Forward, Reverse Case Study

2.5.4 A Burglar Alarm

Consider the design of a burglar alarm for a house. When activated an alarm and
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lights will be activated to encourage the unwanted guest to leave. This alarm be activated
if an unauthorized intruder is detected by window sensor and a motion detector. The win-
dow sensor is effectively a loop of wire that is a piece of thin metal foil that encircles the
window. If the window is broken, the foil breaks breaking the conductor. This behaves like
a normally closed switch. The motion sensor is designed so that when a person is detected
the output will go on. As with any alarm an activate/deactivate switch is also needed. The
basic operation of the alarm system, and the inputs and outputs of the controller are item-
ized in Figure 2.18.

The inputs and outputs are chosen to be;

A = Alarm and lights switch (1 = on)
W = Window/Door sensor (1 = OK)
M = Motion Sensor (0 = OK)

S = Alarm Active switch (1 =on)

The basic operation of the alarm can be described with rules.
1. If alarm is on, check sensors.

2. If window/door sensor is broken (turns off), sound alarm and turn on
lights

Note: As the engineer, it is your responsibility to define these items before starting
the work. If you do not do this first you are guaranteed to produce a poor
design. It is important to develop a good list of inputs and outputs, and give
them simple names so that they are easy to refer to. Most companies will use
wire numbering schemes on their diagrams.

Figure 2.18  Controller Requirements List for Alarm

The next step is to define the controller equation. In this case the controller has 3
different inputs, and a single output, so a truth table is a reasonable approach to formaliz-
ing the system. A Boolean equation can then be written using the truth table in Figure
2.19. Of the eight possible combinations of alarm inputs, only three lead to alarm condi-
tions.
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Inputs Output

>

alarm off
i ;alarm on/no thief
alarm on/thief detected

note the binary sequence

—_— == O O OO W
—_—_O O == OO z

—_O = O = OO g
—_——O = O O OO

Figure 2.19  Truth Table for the Alarm

The Boolean equation in Figure 2.20 is written by examining the truth table in Fig-
ure 2.19. There are three possible alarm conditions that can be represented by the condi-
tions of all three inputs. For example take the last line in the truth table where when all
three inputs are on the alarm should be one. This leads to the last term in the equation. The

other two terms are developed the same way. After the equation has been written, it is sim-
plified.
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A= -M-W)y+(S-M-W)+(S-M-W)
A=S-(M-W+M-W+M-W)

cA=S8S-(M-W+M-W)y+(M-W+M-W))

A= (S-+(S-M) =S (W+ M)

AW D ~ W (S*W)
} (S*W)+(S*M)

: — ) >—
A
. pu
(S*M)

Figure 2.20 A Boolean Equation and Implementation for the Alarm

The equation and circuits shown in Figure can also be further simplified, as shown
in Figure 2.21.
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= (S*W)+(S*M)

s P

Figure 2.2]1  The Simplest Circuit and Ladder Diagram

Aside: The alarm could also be implemented in programming languages. The pro-
gram below is for a Basic Stamp II chip. (www.parallaxinc.com)

w=1;s=2;m=3;a=4

input m; input w; input s

output a

loop:

if (in2 = 1) and (inl =0 or in3 = 1) then on
low a; goto loop ‘alarm off

on:

high a; goto loop ‘alarm on

Figure 2.22  Alarm Implementation Using A High Level Programming Language

2.6 Summary

* Logic can be represented with Boolean equations.

* Boolean equations can be converted to (and from) digital circuits.
* Boolean equations can be simplified.

» Different controllers can behave the same way.

» Common logic forms exist and can be used to understand logic.
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» Truth tables can represent all of the possible state of a system.

2.7 Problems

1. Draw a circuit that will cause output D to go true when switch A and switch B are closed or
when switch C is closed.

2. Draw a circuit that will cause output D to be on when push button A is on, or either B or C are
on.

3. Design a circuit for a car that considers the variables below to control the motor M. Also add a
second output that uses any outputs not used for motor control.

- doors opened/closed (D)
- keys in ignition (K)

- motor running (M)

- transmission in park (P)
- ignition start (I)

4. Make a simple circuit that will turn on the outputs with the binary patterns when the corre-
sponding buttons are pushed. Inputs X, Y, and Z will never be on at the same time.

OUTPUTS
INPUTS
HG F E DC B A
I 1 0 1 0 1 0 1 Input X on
1 0 1 0 0 0 1 Input Y on
1 0 0 1 0 1 1 1 Input Z on

5. Convert the following Boolean equation to the simplest possible circuit.

X=A4-(A+A4-B)
6. Simplify the following boolean equations.

2) A(B + AB) b)  A(B+4B)
¢) A(B+ AB) d) A(B+ AB)

7. Simplify the following Boolean equations,
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a) (A4+B)-(4+B)

b) ABCD + ABCD + ABCD + ABCD

8. Simplify the Boolean expression below.

((4-B)+(B+4))-C+(B-C+B-0C)

9. Given the Boolean expression a) draw a digital circuit and b) simplify the expression.

X=A4-B-C+(C+B)

10. Simplify the following Boolean equation and write a corresponding circuit.

Y = (ABCD+ ABCD+ ABCD + ABCD)+ D

11. For the following Boolean equation,
X =A+B(A+CB+DAC)+ABCD

a) Write the logic circuit for the unsimplified equation.
b) Simplify the equation.
c) Write the circuit for the simplified equation.

12. a) Write a Boolean equation for the following truth table. (Hint: do this by writing an expres-
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sion for each line with a true output, and then ORing them together.)

A B C D Result
0 0 0 0 1
0 0 0 1 0
0 0 1 0 0
0 0 1 1 1
0 1 0 0 0
0 1 0 1 1
0 1 1 0 0
0 1 1 1 1
1 0 0 0 1
1 0 0 1 0
1 0 1 0 0
1 0 1 1 1
1 1 0 0 0
1 1 0 1 0
1 1 1 0 1
1 1 1 1 1

b) Write the results in a) in a Boolean equation.
c¢) Simplify the Boolean equation in b)

13. Simplify the following Boolean equation, and create the simplest circuit.

Y=2C Z+(Z+(E@(A +B_C‘))]

14. Simplify the following boolean equation with Boolean algebra and write the corresponding
circuit.

X=(A+B-A)+(C+D+EC)

15. a) Develop the Boolean expression for the circuit below.
b) Simplify the Boolean expression.
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c¢) Draw a simpler circuit for the equation in b).

L |
P o —

¢ oo 0

16. Given a system that is described with the following equation,

X=A4+B-(A+C)+C)+A4-B-(D+E)

>

a) Simplify the equation using Boolean Algebra.
b) Implement the original and then the simplified equation with a digital circuit.

17. Simplify the following and implement the original and simplified equations with gates.

A+(B+C+D) - (B+C)+A4-B-(C+D)

18. Simplify the following Boolean equation and implement it in a circuit.

X=A+BA+BC+D+C

19. Use Boolean equations to develop simplified circuit for the following truth table where A, B,
C and D are inputs, and X and Y are outputs.
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A B C D X Y
o o0 o0 O 0 O
0o 0 0 1 1 0
0 O 1 0 0 O
0 0 1 1 1 0
0 1 0 0 0 O
0 1 0 1 0 1
0 1 1 0 0 1
0 1 1 1 0 1
1 0 0 0 0 O
1 0 O 1 1 0
1 0 1 0 0 O
1 0 1 1 1 0
1 1 0 0 0 O
1 1 0 1 1 1
1 1 1 0 0 1
1 1 1 1 1 1

20. Convert the truth table below to a Boolean equation, and then simplify it. The output is X and
the inputs are A, B, C and D.

A B C D X
0 0 0 0 0
0 0 0 1 0
0 0 1 0 0
0 0 1 1 1
0 1 0 0 0
0 1 0 1 0
0 1 1 0 0
0 1 1 1 1
1 0 0 0 0
1 0 0 1 0
1 0 1 0 0
1 0 1 1 1
1 1 0 0 1
1 1 0 1 1
1 1 1 0 1
1 1 1 1 1

21. Simplify the following Boolean equation. Convert both the unsimplified and simplified equa-
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tions to a circuit.

X = (ABC)(4+BC)

2.8 Problem Solutions

A13JC7>07
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N = <
s

a) AB b) A+B c) AB d A+B

(A+B)-(A+B) = (AB)(4B) = 0

ABCD+ ABCD+ ABCD + ABCD = BCD+ ABD = B(CD + AD)

X=B-(4-C+C)



10.

I1.

b)
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Y = (ABCD + ABCD + ABCD + ABCD) + D
Y = (ABCD+ ABCD + ABCD + ABCD)D
Y = (0+ABCD+0+0)D

Y = ABCD

caw »
<

=

X =A4A+DCB

-
&f
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BCD+ABCD+ ABCD+ ABCD + ABCD + ABCD + ABCD + ABCD

BCD+ ACD+BCD+ ABD+ BCD+ ACD + ABC

oo

CD+CD(A+A)+CD(B+B)+ABD+ ABC

BCD+D(C+AB)+ ABC

~
Il
Al
'
_|._
N
+
=
Q
R
+
o)
a
U
N——

Y=2Cl4 +(Z1 + (Eﬁ(m)))j

Y = é(z A+ (1‘96236)))

Y = 6(24+(74+6))

Y=C@+(A+1))

~
Il
Q
'
+
e
> 0
<!
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14.

X = (4+B-4)+(C+D+EC)

X=(4+B-4)+(C+D+EC)

OR
X =(4+B-4)(C+D+EC) X=A+B-A+CDE+C)
X = (A)(B-A)(C+D+EC) X =A+B+CDE

i3 4 - X = 4B(CDE)
X = (4)(B-4)(C+D+EC)
X = AB(C+D+EC) X = AB(C+D+E)
X = AB(C+D+E)
15.
CAB
C
X

i
»




16.

17.

plc boolean - 2.276

a) X=A4+B-(A+C)+C)+4-B-(D+E)
X=A4+B-A+B-C+C)+4-B-D+A-B-E

X=A4-(1+B-D+B-E)+B-A+C-(B+1)
X=A+B-A+C
ABCDE

b) 1“ D&DLJIE}

ol

A+(B+C+D) - (B+C)+A-B-(C+D)
A-(1+B-(C+D))+(B+C+D)-B+(B+C+D)-C
A+(C+D)-B+C

A+C-B+D-B+C

A+D-B+C



0
P—>0
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2.9 Challenge Problems

1. Write a program that implements the following Boolean expression in Scilab or C. The user
should be able input values and the results should be printed.

A+(B+C+D) - (B+C)+A4-B-(C+D)
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3. NUMBERS AND DATA

Topics:
* Number bases; binary, octal, decimal, hexadecimal
* Binary calculations; 2s compliments, addition, subtraction and Boolean opera-
tions
* Encoded values; BCD and ASCII
* Error detection; parity, gray code and checksums

Objectives:
* To be familiar with binary, octal and hexadecimal numbering systems.
* To be able to convert between different numbering systems.
* To understand 2s compliment negative numbers.
* To be able to convert ASCII and BCD values.
* To be aware of basic error detection techniques.

3.1 Introduction

Base 10 (decimal) numbers developed naturally because the original developers
(probably) had ten fingers, or 10 digits. Now consider logical systems that only have wires
that can be on or off. When counting with a wire the only digits are 0 and 1, giving a base
2 numbering system. Numbering systems for computers are often based on base 2 num-
bers, but base 4, 8, 16 and 32 are commonly used. A list of numbering systems is give in
Figure 3.1. An example of counting in these different numbering systems is shown in Fig-
ure 3.2.

Base Name Data Unit
2 Binary Bit

8 Octal Nibble

10 Decimal Digit

16 Hexadecimal Byte

Figure 3.1 Numbering Systems
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decimal binary octal hexadecimal
0 0 0 0
1 1 1 1
2 10 2 2
3 11 3 3
4 100 4 4
5 101 5 5
6 110 6 6
7 111 7 7 Note: As with all numbering systems
8 1000 10 8
9 1001 11 9 most significant digits are at left,
10 1010 12 a least significant digits are at right.
11 1011 13 b
12 1100 14 C
13 1101 15 d
14 1110 16 e
15 1111 17 f
16 10000 20 10
17 10001 21 11
18 10010 22 12
19 10011 23 13
20 10100 24 14

Figure 3.2 Numbers in Decimal, Binary, Octal and Hexadecimal

The effect of changing the base of a number does not change the actual value, only
how it is written. The basic rules of mathematics still apply, but many beginners will feel
disoriented. This chapter will cover basic topics that are needed to use more complex pro-
gramming instructions later in the book. These will include the basic number systems,
conversion between different number bases, and some data oriented topics.

3.2 Numerical Values

3.2.1 Binary

Binary numbers are the most fundamental numbering system in all computers. A
single binary digit (a bit) corresponds to the condition of a single wire. If the voltage on
the wire is true the bit value is /. If the voltage is off the bit value is 0. If two or more wires
are used then each new wire adds another significant digit. Each binary number will have
an equivalent digital value. Figure 3.3 shows how to convert a binary number to a decimal
equivalent. Consider the digits, starting at the right. The least significant digit is /, and is
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in the Oth position. To convert this to a decimal equivalent the number base (2) is raised to
the position of the digit, and multiplied by the digit. In this case the least significant digit
is a trivial conversion. Consider the most significant digit, with a value of / in the 6th
position. This is converted by the number base to the exponent 6 and multiplying by the
digit value of 1. This method can also be used for converting the other number system to
decimal.

20=64 2°=32 2*=16 P’= =1

\\e\l}l‘

1(26)— 64
1(2)— 32
1(2)— 16
02 = 0
0(22)— 0
0(2)— 0
12% = 1
113

Figure 3.3 Conversion of a Binary Number to a Decimal Number

Decimal numbers can be converted to binary numbers using division, as shown in
Figure 3.4. This technique begins by dividing the decimal number by the base of the new
number. The fraction after the decimal gives the least significant digit of the new number
when it is multiplied by the number base. The whole part of the number is now divided
again. This process continues until the whole number is zero. This method will also work
for conversion to other number bases.
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start with decimal number 932

\

232 _ 466 2(0.0)=0
for binary -9~ 2
(base:2) 466 _ 533 2(0.0)=0
2 /
233
222 _ 2(0.5)=1
5 /116 (0.5)
116 _ &g 2(0.0)=0
2 /
58
38 _ 2(0.0)=0
5 )/29 (0.0)
29 _ 14 2(0.5)=1
2 /
14

2(0.0)=0 1110100100

|
I
~

\

2(0.5)=1

I
o8}

2(0.5)=1

NIW . NI
I
—

b\

2(0.5)=1

Il
=)

-

done ) . o
multiply places after decimal by division

base, in this case it is 2 because of the binary.

* This method works for other number bases also, the divisor and multipliers
should be changed to the new number bases.

Figure 3.4 Conversion from Decimal to Binary

Most scientific calculators will convert between number bases. But, it is important
to understand the conversions between number bases. And, when used frequently enough
the conversions can be done in your head.

Binary numbers come in three basic forms - a bit, a byte and a word. A bit is a sin-
gle binary digit, a byte is eight binary digits, and a word is 16 digits. Words and bytes are
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shown in Figure 3.5. Notice that on both numbers the least significant digit is on the right
hand side of the numbers. And, in the word there are two bytes, and the right hand one is
the least significant byte.

BYTE WORD
MSB LS\B MSB LSB
0110 1011 0110 1011 0100 0010
most least
significant  significant
byte byte

Figure 3.5 Bytes and Words

Binary numbers can also represent fractions, as shown in Figure 3.6. The conver-
sion to and from binary is identical to the previous techniques, except that for values to the
right of the decimal the equivalents are fractions.

binary: 101.011

N—

12 =4 o02)=0 12%=1 o2 =0 129 127 =

0l

=44+0+1+0+-+= = 5375 decimal

Eo N e
Q=

Figure 3.6 A Binary Decimal Number

3.2.1.1 - Boolean Operations

In the next chapter you will learn that entire blocks of inputs and outputs can be
used as a single binary number (typically a word). Each bit of the number would corre-
spond to an output or input as shown in Figure 3.7.
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There are three motors M, M, and M5 represented with three bits in a binary
number. When any bit is on the corresponding motor is on.

100 = Motor 1 is the only one on
111 = All three motors are on

in total there are 2" or 2° possible combinations of motors on.

Figure 3.7  Motor Outputs Represented with a Binary Number

We can then manipulate the inputs or outputs using Boolean operations. Boolean
algebra has been discussed before for variables with single values, but it is the same for
multiple bits. Common operations that use multiple bits in numbers are shown in Figure
3.8. These operations compare only one bit at a time in the number, except the shift
instructions that move all the bits one place left or right.

Name Example Result

AND 0010 * 1010 0010

OR 0010 + 1010 1010

NOT 0010 1101

EOR 0010 eor 1010 1000

NAND 0010 * 1010 1101

shift left 111000 110001  (other results are possible)
shift right 111000 011100  (other results are possible)
etc.

Figure 3.8  Boolean Operations on Binary Numbers

3.2.1.2 - Binary Mathematics

Negative numbers are a particular problem with binary numbers. As a result there
are three common numbering systems used as shown in Figure 3.9. Unsigned binary num-
bers are common, but they can only be used for positive values. Both signed and 2s com-
pliment numbers allow positive and negative values, but the maximum positive values is
reduced by half. 2s compliment numbers are very popular because the hardware and soft-
ware to add and subtract is simpler and faster. All three types of numbers will be found in
PLCs.
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Type Description Range for Byte
unsigned binary numbers can only have positive values. 0 to 255
signed the most significant bit (MSB) of the binary number| -127 to 127

is used to indicate positive/negative.
2s compliment | negative numbers are represented by complimenting| -128 to 127

the binary number and then adding 1.

Figure 3.9  Binary (Integer) Number Types

Examples of signed binary numbers are shown in Figure 3.10. These numbers use

the most significant bit to indicate when a number is negative.

decimal binary byte
2 00000010
1 00000001
0 00000000
-0 10000000 k Note: there are two zeros
-1 10000001
-2 10000010

Figure 3.10  Signed Binary Numbers

An example of 2s compliment numbers are shown in Figure 3.11. Basically, if the
number is positive, it will be a regular binary number. If the number is to be negative, we
start the positive number, compliment it (reverse all the bits), then add 1. Basically when
these numbers are negative, then the most significant bit is set. To convert from a negative

2s compliment number, subtract 1, and then invert the number.
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decimal binary byte METHOD FOR MAKING A NEGATIVE NUMBER
2 00000010 1. write the binary number for the positive
1 00000001 . _
0 00000000 for -30 we write 30 = 00011110
-1 11111111 2. Invert (compliment) the number
-2 11111110

00011110 becomes 11100001

3.Add 1
11100001 + 00000001 = 11100010

Figure 3.11  2s Compliment Numbers

Using 2s compliments for negative numbers eliminates the redundant zeros of
signed binaries, and makes the hardware and software easier to implement. As a result
most of the integer operations in a PLC will do addition and subtraction using 2s compli-
ment numbers. When adding 2s compliment numbers, we don’t need to pay special atten-
tion to negative values. And, if we want to subtract one number from another, we apply
the twos compliment to the value to be subtracted, and then apply it to the other value.

Figure 3.12 shows the addition of numbers using 2s compliment numbers. The
three operations result in zero, positive and negative values. Notice that in all three opera-
tion the top number is positive, while the bottom operation is negative (this is easy to see
because the MSB of the numbers is set). All three of the additions are using bytes, this is
important for considering the results of the calculations. In the left and right hand calcula-
tions the additions result in a 9th bit - when dealing with 8 bit numbers we call this bit the
carry C. If the calculation started with a positive and negative value, and ended up with a
carry bit, there is no problem, and the carry bit should be ignored. If doing the calculation
on a calculator you will see the carry bit, but when using a PLC you must look elsewhere
to find it.
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00000001 =1 00000001 =1 00000010 =2

+ 11111111 =-1 4+ 11111110 =-2 + 1111111 =-1

C+00000000 =0 LTI =-1 C+00000001 =1
ignore the carry bits Note: Normally the carry bit is ignored during the oper-

ation, but some additional logic is required to make
sure that the number has not overflowed and moved
outside of the range of the numbers. Here the 2s com-
pliment byte can have values from -128 to 127.

Figure 3.12  Adding 2s Compliment Numbers

The integers have limited value ranges, for example a 16 bit word ranges from -
32,768 to 32,767. In some cases calculations will give results outside this range, and the
Overflow O bit will be set. (Note: an overflow condition is a major error, and the PLC will
probably halt when this happens.) For an addition operation the Overflow bit will be set
when the sign of both numbers is the same, but the sign of the result is opposite. When the
signs of the numbers are opposite an overflow cannot occur. This can be seen in Figure
3.13 where the numbers two of the three calculations are outside the range. When this hap-
pens the result goes from positive to negative, or the other way.

01111111 =127 10000001 = -127 10000001 = -127
4 00000011 =3 L 111111r=-1 4+ 11111110 =-2

10000010 =-126 10000000 = -128 01111111 = 127

C=0 Cc=1 Cc=1

O =1 (error) O =0 (no error) O =1 (error)

Note: If an overflow bit is set this indicates that a calculation is outside and
acceptable range. When this error occurs the PLC will halt. Do not ignore the
limitations of the numbers.

Figure 3.13  Carry and Overflow Bits

These bits also apply to multiplication and division operations. In addition the PLC
will also have bits to indicate when the result of an operation is zero Z and negative N.



plc numbers - 3.288

3.2.2 Other Base Number Systems

Other number bases are typically converted to and from binary for storage and
mathematical operations. Hexadecimal numbers are popular for representing binary val-
ues because they are quite compact compared to binary. (Note: large binary numbers with
a long string of 1s and Os are next to impossible to read.) Octal numbers are also popular
for inputs and outputs because they work in counts of eight; inputs and outputs are in
counts of eight.

An example of conversion to, and from, hexadecimal is shown in Figure 3.14 and
Figure 3.15. Note that both of these conversions are identical to the methods used for
binary numbers, and the same techniques extend to octal numbers also.

163 = 4096 =256 =16 16°=1

\ké/

f8a

15(163) = 61440
8(162) = 2048

10(16 )= 160
3(16%) = 3
63651

Figure 3.14  Conversion of a Hexadecimal Number to a Decimal Number

724 _ 35775 2 ——® 16(0.75)=12"¢’

16
3’1%7 — 223125 —® 16(0.3125)=5
% ~ 1375 —® 16(0.375)=6 L65¢

% = 00625 —® 16(0.0625)=1

Figure 3.15  Conversion from Decimal to Hexadecimal
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3.2.3 BCD (Binary Coded Decimal)

Binary Coded Decimal (BCD) numbers use four binary bits (a nibble) for each
digit. (Note: this is not a base number system, but it only represents decimal digits.) This
means that one byte can hold two digits from 00 to 99, whereas in binary it could hold
from 0 to 255. A separate bit must be assigned for negative numbers. This method is very
popular when numbers are to be output or input to the computer. An example of a BCD
number is shown in Figure 3.16. In the example there are four digits, therefore 16 bits are
required. Note that the most significant digit and bits are both on the left hand side. The
BCD number is the binary equivalent of each digit.

decimal

1263 Note: this example shows four digits
/ /\\ in two bytes. The hex values

0001 0010 0110 0011  BCD would also be 1263.

Figure 3.16 A BCD Encoded Number

Most PLCs store BCD numbers in words, allowing values between 0000 and 9999.
They also provide functions to convert to and from BCD. It is also possible to calculations
with BCD numbers, but this is uncommon, and when necessary most PLCs have functions
to do the calculations. But, when doing calculations you should probably avoid BCD and
use integer mathematics instead. Try to be aware when your numbers are BCD values and
convert them to integer or binary value before doing any calculations.

3.3 Data Characterization

3.3.1 ASCII (American Standard Code for Information Interchange)

When dealing with non-numerical values or data we can use plain text characters
and strings. Each character is given a unique identifier and we can use these to store and
interpret data. The ASCII (American Standard Code for Information Interchange) is a very
common character encryption system is shown in Figure 3.17 and Figure 3.18. The table
includes the basic written characters, as well as some special characters, and some control
codes. Each one is given a unique number. Consider the letter 4, it is readily recognized by
most computers world-wide when they see the number 65.
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Figure 3.17

=
£
. = 8
5 < © 2
00000000 NUL 32 20
00000001 SOH 33 21
00000010 STX 34 22
00000011 ETX 35 23
00000100 EOT 36 24
00000101 ENQ 37 25
00000110 ACK 38 26
00000111 BEL 39 27
00001000 BS 40 28
00001001 HT 41 29
00001010 LF 42 2A
00001011 VT 43 2B
00001100 FF 44 2C
00001101 CR 45 2D
00001110 SO 46 2E
00001111  S1 47 2F
00010000 DLE 48 30
00010001 DC1 49 31
00010010 DC2 50 32
00010011 DC3 51 33
00010100 DC4 52 34
00010101 NAK 53 35
00010110 SYN 54 36
00010111 ETB 55 37
00011000 CAN 56 38
00011001 EM 57 39
00011010 SUB 58 3A
00011011 ESC 59 3B
00011100 FS 60 3C
00011101  GS 61 3D
00011110 RS 62 3E
00011111  US 63 3F
ASCII Character Table
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binary

00100000
00100001
00100010
00100011
00100100
00100101
00100110
00100111
00101000
00101001
00101010
00101011
00101100
00101101
00101110
00101111

00110000
00110001
00110010
00110011
00110100
00110101
00110110
00110111

00111000
00111001
00111010
00111011
00111100
00111101

00111110
00111111

+ %~

O 0NN P WLWND—O ™~

VLA
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= =

E E

'§ ' = Té fé 2 =
§ < Q ‘5 § < Q
o .E 2 O o .5 A
<= 5 < o = © <
40 01000000 @ 96 60 01100000 °
41 01000001 A 97 61 01100001 a
42 01000010 B 98 62 01100010 b
43 01000011 C 99 63 01100011 ¢
44 01000100 D 100 64 01100100 d
45 01000101 E 101 65 01100101 e
46 01000110 F 102 66 01100110 f
47 01000111 G 103 67 01100111 g
48 01001000 H 104 68 01101000 h
49 01001001 1 105 69 01101001 1
4A 01001010 J 106 6A 01101010 j
4B 01001011 K 107 6B 01101011 k
4C 01001100 L 108 6C 01101100 1
4D 01001101 M 109 6D 01101101 m
4E 01001110 N 110  6E 01101110 n
4F 01001111 O 111 6F 01101111 o
50 01010000 P 112 70 01110000 p
51 01010001 Q 113 71 01110001 ¢
52 01010010 R 114 72 01110010 r
53 01010011 S 115 73 01110011 s
54 01010100 T 116 74 01110100 t
55 01010101 U 117 75 01110101 u
56 01010110 V 118 76 01110110 v
57 01010111 W 119 77 01110111 w
58 01011000 X 120 78 01111000 x
59 01011001 Y 121 79 01111001 'y
5A 01011010 Z 122 7A 01111010 z
5B 01011011 [ 123 7B 01111011 {
5C 01011100 yen 124 7C 01111100 |
5D 01011101 ] 125 7D 01111101 }
5E 01011110 A~ 126 7E 01111110 r arr.
S5F 01011111 127 7F 01111111 | arr.

Figure 3.18  ASCII Character Table

This table has the codes from 0 to 127, but there are more extensive tables that
contain special graphics symbols, international characters, etc. It is best to use the basic
codes, as they are supported widely, and should suffice for all controls tasks.



plc numbers - 3.292

An example of a string of characters encoded in ASCII is shown in Figure 3.19.

e.g. The sequence of numbers below will convert to

A W e e T e s t
A 65
space 32
w 87
e 101
e 101
space 32
T 84
e 101
S 115
t 116

Figure 3.19 A String of Characters Encoded in ASCII

When the characters are organized into a string to be transmitted and LF and/or CR
code are often put at the end to indicate the end of a line. When stored in a computer an
ASCII value of zero is used to end the string.

3.3.2 Parity

Errors often occur when data is transmitted or stored. This is very important when
transmitting data in noisy factories, over phone lines, etc. Parity bits can be added to data
as a simple check of transmitted data for errors. If the data contains error it can be retrans-
mitted, or ignored.

A parity bit is normally a 9th bit added onto an 8 bit byte. When the data is
encoded the number of true bits are counted. The parity bit is then set to indicate if there
are an even or odd number of true bits. When the byte is decoded the parity bit is checked
to make sure it that there are an even or odd number of data bits true. If the parity bit is not
satisfied, then the byte is judged to be in error. There are two types of parity, even or odd.
These are both based upon an even or odd number of data bits being true. The odd parity
bit is true if there are an odd number of bits on in a binary number. On the other hand the
Even parity is set if there are an even number of true bits. This is illustrated in Figure 3.20.
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data parity
bits bit
Odd Parity 10101110 1
10111000 0
Even Parity 00101010 0
10111101 1

Figure 3.20  Parity Bits on a Byte

Parity bits are normally suitable for single bytes, but are not reliable for data with a
number of bits.

Note: Control systems perform important tasks that can be dangerous in certain circum-
stances. If an error occurs there could be serious consequences. As a result error
detection methods are very important for control system. When error detection occurs
the system should either be robust enough to recover from the error, or the system
should fail-safe. If you ignore these design concepts you will eventually cause an
accident.

3.3.3 Checksums

Parity bits are suitable for a few bits of data, but checksums are better for larger
data transmissions. These are simply an algebraic sum of all of the data transmitted.
Before data is transmitted the numeric values of all of the bytes are added. This sum is
then transmitted with the data. At the receiving end the data values are summed again, and
the total is compared to the checksum. If they match the data is accepted as good. An
example of this method is shown in Figure 3.21.
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DATA
124

43
255
9
27
47

CHECKSUM
505

Figure 3.21 A Checksum

Checksums are very common in data transmission, but these are also hidden from
the average user. If you plan to transmit data to or from a PLC you will need to consider
parity and checksum values to verify the data. Small errors in data can have major conse-
quences in received data. Consider an oven temperature transmitted as a binary integer
(1023d = 0000 0100 0000 0000Db). If a single bit were to be changed, and was not detected
the temperature might become (0000 0110 0000 0000b = 1535d) This small change would
dramatically change the process.

3.3.4 Gray Code

Parity bits and checksums are for checking data that may have any value. Gray
code is used for checking data that must follow a binary sequence. This is common for
devices such as angular encoders. The concept is that as the binary number counts up or
down, only one bit changes at a time. Thus making it easier to detect erroneous bit
changes. An example of a gray code sequence is shown in Figure 3.22. Notice that only
one bit changes from one number to the next. If more than a single bit changes between
numbers, then an error can be detected.

ASIDE: When the signal level in a wire rises or drops, it induces a magnetic pulse that
excites a signal in other nearby lines. This phenomenon is known as cross-talk. This
signal is often too small to be noticed, but several simultaneous changes, coupled with
background noise could result in erroneous values.
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decimal gray code

0000
0001
0011
0010
0110
0111
0101
0100
1100
1101
1111
1110
1010
1011
1001
1000

OO0 IN NI WN—O

et
npbhwWwNh—O

Figure 3.22  Gray Code for a Nibble

3.4 Summary

* Binary, octal, decimal and hexadecimal numbers were all discussed.

* 2s compliments allow negative binary numbers.

* BCD numbers encode digits in nibbles.

* ASCII values are numerical equivalents for common alphanumeric characters.
* Gray code, parity bits and checksums can be used for error detection.

3.5 Problems

1. Why are binary, octal and hexadecimal used for computer applications?
2. Is a word is 3 nibbles?
3. What are the specific purpose for Gray code and parity?

4. Convert the following numbers to/from binary
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a) from base 10: 54,321 b) from base 2: 110000101101

5. Convert the BCD number below to a decimal number,

01100010 0111 1001

6. Convert the following binary number to a BCD number,

0100 1011

7. Convert the following binary number to a Hexadecimal value,

0100 1011

8. Convert the following binary number to a octal,

0100 1011

9. Convert the decimal value below to a binary byte, and then determine the odd parity bit,
97

10. Convert the following from binary to decimal, hexadecimal, BCD and octal.

a) 101101 C) 10000000001
b) 11011011 d) 0010110110101



I1.

12.

13.

14.

15.

16.
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Convert the following from decimal to binary, hexadecimal, BCD and octal.
a) 1 c) 20456
b) 17 d) -10
Convert the following from hexadecimal to binary, decimal, BCD and octal.
a) 1 C) ABC
b) 17 d) -A
Convert the following from BCD to binary, decimal, hexadecimal and octal.
a) 1001 c) 0011 0110 0001
b) 1001 0011 d) 0000 0101 0111 0100
Convert the following from octal to binary, decimal, hexadecimal and BCD.
a) 7 c) 777
b) 17 d 32634

a) Represent the decimal value thumb wheel input, 3532, as a Binary Coded Deci-
mal (BCD) and a Hexadecimal Value (without using a calculator).
i) BCD
i1) Hexadecimal
b) What is the corresponding decimal value of the BCD value,
1001111010011011?

Add/subtract/multiply/divide the following numbers.

a) binary 101101101 + 01010101111011 1) octal 123 - 777

b) hexadecimal 101 + ABC J) 2s complement bytes 10111011 + 00000011
c) octal 123 + 777 k) 2s complement bytes 00111011 + 00000011
d) binary 110110111 - 0101111 1) binary 101101101 * 10101

e) hexadecimal ABC - 123 m) octal 123 * 777

f) octal 777 - 123 n) octal 777/ 123

g) binary 0101111 - 110110111 0) binary 101101101 / 10101

h) hexadecimal 123-ABC p) hexadecimal ABC /123
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17. Do the following operations with 8 bit bytes, and indicate the condition of the overflow and
carry bits.

a) 10111011 + 00000011 d) 110110111 - 01011111
b) 00111011 + 00000011 e) 01101011 + 01111011
¢) 11011011 + 11011111 f) 10110110 - 11101110

18. Consider the three BCD numbers listed below.

1001 0110 0101 0001
0010 0100 0011 1000
0100 0011 0101 0001

a) Convert these numbers to their decimal values.

b) Convert the decimal values to binary.

c) Calculate a checksum for all three binary numbers.

d) What would the even parity bits be for the binary words found in b).
19. Is the 2nd bit set in the hexadecimal value F49?

20. Explain where grey code occurs when creating Karnaugh maps.

21. Convert the decimal number 1000 to a binary number, and then to hexadecimal.

3.6 Problems Solutions

1. base 2, 4, 8, and 16 numbers translate more naturally to the numbers stored in the computer.

2. no, it is four nibbles

3. Both of these are coding schemes designed to increase immunity to noise. A parity bit can be
used to check for a changed bit in a byte. Gray code can be used to check for a value error in a
stream of continuous values.

4.a) 1101 0100 0011 0001, b) 3117

5.6279

6.0111 0101

7.4B

8. 113



9. 1100001 odd parity bit =1

10.

I1.

12.

13.
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binary 101101 11011011 10000000001 0010110110101
BCD 01000101 00100001 1001 0001 000000100101 0001 010001100001
decimal 45 219 1025 1461

hex 2D 5D 401 5B5

octal 55 333 2001 2665

decimal 1 17 20456 -10

BCD 0001 00010111 0010 0000 0100 0101 0110 -0001 0000

binary 1 10001 0100 1111 1110 1000 1111 1111 1111 0110
hex 1 11 4FE8 FFF6

octal 1 21 47750 177766

hex 1 17 ABC -A

BCD 0001 00100011 00100111 0100 1000 -0001 0000

binary 1 10111 0000 1010 1011 1100 1111 1111 1111 0110
decimal 1 23 2748 -10

octal 1 27 5274 177766

BCD 1001 1001 0011 0011 0110 0001 0000 0101 0111 0100
binary 1001 101 1101 10110 1001 100011 1110

decimal 9 93 361 0574

hex 9 5D 169 23E

octal 11 135 551 1076
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14.
octal 7 17 777 32634
binary 111 1111 11111 1111 0011 0101 1001 1100
decimal 7 15 511 13724
hex 7 F 1FF 359C
BCD 0111 0001 0101 0101 0001 0001 0001 0011 0111 0010 0100

15.2)3532=0011 0101 0011 0010 = DCC, b0 the number is not a valid BCD

16.
a) 0001 0110 1110 1000 i) -654
b) BBD j) 0000 0001 0111 1010
c) 1122 k) 0000 0000 0011 1110
d) 0000 0001 1000 1000 1) 0001 1101 1111 0001
e) 999 m) 122655
f) 654 n) 6
g) 1111 1110 0111 1000 0) 0000 0000 0001 0001
h) -999 p) 9
17.
a) 10111011 +00000011=1011 1110 d) 110110111 - 01011111=0101 1000+C+O
b) 00111011 + 00000011=0011 1110 e) 01101011 +01111011=1110 0110

c) 11011011 + 11011111=1011 1010+C+O f) 10110110 - 11101110=1100 1000

18.2) 9651, 2438, 4351, ) 0010 0101 1011 0011, 0000 1001 1000 0110, 0001 0000 1111 1111, ¢)
16440, d) 1, 0, 0

19. The binary value is 1111 0100 1001, so the second bit is 0
20. when selecting the sequence of bit changes for Karnaugh maps, only one bit is changed at a

time. This is the same method used for grey code number sequences. By using the code the bits
in the map are naturally grouped.
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21.
1000,, = 1111101000, = 38,

3.7 Challenge Problems
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4. TRANSFORMS

##%%* This contains additions and sections by Dr. Andrew Sterian.

Topics:

Objectives:

4.1 Laplace Transforms

* The Laplace transform allows us to reverse time. And, as you recall from before the inverse of
time is frequency. Because we are normally concerned with response, the Laplace transform is
much more useful in system analysis.

* The basic Laplace transform equations is shown below,

F(s) = j: firye dt

where,

f(t) = the function in terms of time t

F(s) = the function in terms of the Laplace s
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4.1.1 Laplace Transform Tables

* Basic Laplace Transforms for operational transformations are given below,

TIME DOMAIN FREQUENCY DOMAIN

K1) Kf(s)

HO+ L0+ ... Ji() Tho(s)=f3(s) + ...

e (5)~0)

2

LA fis)-s0 )~ 449

dt

d'f(1) ey lpgm 240 )  df0)
o sfs)—s" fl0 )=s .7 o
jt fndt M)

0 N

At—a)yu(t—a),a>0 e “f(s)

e A fis—a)
flat),a>0 %/(i)

(1) R

Cf) s

N
flf—) [y u

* A set of useful functional Laplace transforms are given below,
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TIME DOMAIN FREQUENCY DOMAIN
y 4
s
1
! 2
N
—at 1
e _
s+a
sin(wt) @
s2 +o
cos(w?) 5 5
s tTo
re 1 :
(s +a)
e msin(wt) 0)2 5
(sta)y +to
+
e mcos(mt) a 2a 5
(sta)y +to
Ae_m i
s—a
Ate ™ 4
2
(s—a)
_ complex conjugate
2|4le * cos(Bt + 0) 4 4
s+a—pj s+a+pj
_ complex conjugate
2t)Ale * cos(Bt + 0) 4 + 4

(sta—B)’ (sta+p))’

* Laplace transforms can be used to solve differential equations.
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4.2 z-Transforms

* For a discrete-time signal x[n], the two-sided z-transform is defined by X(z) = Z x[n]z .

n=—o0m
0

The one-sided z-transform is defined by X(z) = Z x[n]z " In both cases, the z-transform is

n=20
a polynomial in the complex variable z.

* The inverse z-transform is obtained by contour integration in the complex plane
x[n] = J% §X (2)z"~ 'dz. This is usually avoided by partial fraction inversion techniques,

similar to the Laplace transform.

» Along with a z-transform we associate its region of convergence (or ROC). These are the values
of z for which X(z) is bounded (i.e., of finite magnitude).
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* Some common z-transforms are shown below.

Table 1: Common z-transforms

Signal z-Transform ROC
x[n] X(z)
o[n] 1 All z
1
uln] 3 Iz > 1
1-z
-1
z
nuln] 1.2 |z| > 1
(I-z")
) zfl(l +zil)
n uln] 1.3 |2l > 1
(I-z")
1
a"uln] | — gz |zl > |al
-1
az
na"uln] 1.2 |2 > |al
(1-az )
. 1
(=a"u[-n—-1] — 2| <|al
-1
(—na"yul-n—1] —— 2 <lal
—na Yu[-n-— 12
(1-az "
l—z_lcoswo
cos(wyn)uln] — =) Iz > 1
1 -2z cosmw,+z
_ z sino,
sin(wyn)u[n] — ) |z| > 1
1 -2z cosm,+z
) l—azflcoscoo > ld
a cos(myn)uln] - ~ z| > |a
0 1-2az lcoscoo+a22 2
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Table 1: Common z-transforms

Signal z-Transform ROC
x[n] X(2)
-1 .

“sin(ognuln] e 4>
a sin(wyn)uln - = z| > |a
0 1 -2az 1cosoaOJrazz 2

—k
K-y 1 zl >

* The z-transform also has various properties that are useful. The table below lists properties for
the two-sided z-transform. The one-sided z-transform properties can be derived from the ones

below by considering the signal x[n]u[n] instead of simply x[#n].

Table 2: Two-sided z-Transform Properties

Property Time Domain z-Domain ROC
Notation x[n] X(z) ry <lzl <r,
x[n] X (2) ROC,
Xy[n] X,(2) ROC,
Linearity ax,[n] + Bx,[n] | aX,(z) + BX,(z) At least the intersec-

tion of ROC, and
ROC,

Time Shifting x[n—k] 7F X(z) That of X(z), except
z=01if k>0 and
z =0 if k<0
z-Domain Scaling a"x[n] X(a_lz) lalr, < |z| <lalr,
Time Reversal x[-n] X(zfl) 1 <l < 1
™1 )
z-Domain nx[n] __dX(2) ry<lzl <ry
Difterentiation dz
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Table 2: Two-sided z-Transform Properties

Property Time Domain z-Domain ROC
Convolution x{[n]*x,[n] X,(2)X,(2) At least the intersec-
tion of ROC, and
ROC,
Multiplication x,[n]x,[n] 1 ] At least
1 2
ENASCIRY
]‘ZTci{> 1Ty dv ryy<lel <ryry,
Initial value theo- x[n] causal x[()] = lim X(Z)
rem Z—>

4.3 Fourier Series

* These series describe functions by their frequency spectrum content. For example a square wave
can be approximated with a sum of a series of sine waves with varying magnitudes.

* The basic definition of the Fourier series is given below.

0% 5 o2 5]

a, = 1% jL Lf(x)cos(”Lﬂ“)dx b - % jL Lf(x)sin(nLﬂc)dx

4.4 Problems

8a. Find y(t).

y(s) _ S2 +4s
x(s) S2+6s+9

x(t) =5
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4.5 Challenge Problems
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5. GEOMETRY

Topics:

Objectives:

5.1 Introduction

5.1.1 Inertia

When unbalanced torques are applied to a mass it will begin to accelerate, in rota-
tion. The sum of applied torques is equal to the inertia forces shown in Figure 1.23.
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}—\9’(‘” a ST = Jy (6)

JM = Ixx+1yy (7)
_ (.2 8
xx J-y aM ©
B (9)
T I, [x"am

Note: The 'mass’ moment of inertia will be used when dealing with acceleration of a
mass. Later we will use the area’ moment of inertia for torsional springs.

Figure 1.23  Summing moments and angular inertia

The mass moment of inertia determines the resistance to acceleration. This can be
calculated using integration, or found in tables. When dealing with rotational acceleration
it is important to use the mass moment of inertia, not the area moment of inertia.

The center of rotation for free body rotation will be the centroid. Moment of inertia
values are typically calculated about the centroid. If the object is constrained to rotate
about some point, other than the centroid, the moment of inertia value must be recalcu-
lated. The parallel axis theorem provides the method to shift a moment of inertia from a
centroid to an arbitrary center of rotation, as shown in Figure 1.24.

Ty = Jy+ M
where,

J = ™mass moment about the new point

J = ™mass moment about the center of mass

M = mass of the object

r = distance from the centroid to the new point

Figure 1.24  Parallel axis theorem for shifting a mass moment of inertia
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s 2
J,=J,tAr
where,
= area moment about the new point

J
J | = area moment about the centroid
A

= mass of the object

r = distance from the centroid to the new point

Figure 1.25  Parallel axis theorem for shifting a area moment of inertia

Aside: If forces do not pass through the center of an object, it will rotate. If the object
is made of a homogeneous material, the area and volume centroids can be used as
the center. If the object is made of different materials then the center of mass should
be used for the center. If the gravity varies over the length of the (very long) object
then the center of gravity should be used.

An example of calculating a mass moment of inertia is shown in Figure 1.26. In
this problem the density of the material is calculated for use in the integrals. The integrals
are then developed using slices for the integration element dM. The integrals for the
moments about the x and y axes, are then added to give the polar moment of inertia. This
is then shifted from the centroid to the new axis using the parallel axis theorem.
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The rectangular shape to the right is constrained to rotate about
point A. The total mass of the object is 10kg. The given
dimensions are in meters. Find the mass moment of inertia.

4

---------------------------T----1

| A

First find the density and calculate the moments of inertia about
the centroid.

10Kg

_ _ 2
p = 2—(5m)2(4m) 0.125Kgm

4
4 4 3
I, = I4y2dM = I4y2p2(5m)dy = 1.25Kgm71y?

4
3
— 1.25Kgm1((4’;1) —(_43’")3) — 53.33Kegm”
5 5 3
_ 20 2 _ -1x7
]yy = Jlisx M Lsx p2(4m)dx = 1Kgm 3 p

(5m)>  (=5m)
3 3

— 1Kgm*1( 3) — 83.33Kgm”

2 2 2
Ju = Lt 1, = 53.33Kgm™ + 83.33Kgm™ = 136.67Kgm

Figure 1.26  Mass moment of inertia example

The centroid can now be shifted to the center of rotation using the parallel axis theorem.

Jy = Jy+Mr* = 136.67Kgm” + (10Kg)((-2.5m)" + (~1m)’) = 209.2Kgm’
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The rectangular shape to the right is constrained to rotate about A
point A. The total mass of the object is 10kg. The given
dimensions are in meters. Find the mass moment of inertia 4
WITHOUT using the parallel axis theorem. 25
-5 | S
%—_-1
Z
-4
ans. )
I, = 66.33Kgm
I,, = 1458Kgm’
Jy = 209.2Kgm’

Figure 1.27  Drill problem: Mass moment of inertia calculation
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The 20cm diameter 10 kg cylinder to the left is sit-
ting in a depression that is effectively friction-
less. If a torque of 10 Nm is applied for 5
seconds, what will the angular velocity be?

ans. 0(5s) = 312.5rad

o(55) = 125%’

Figure 1.28  Drill problem: Find the velocity of the rotating shaft

* A set of the basic 2D and 3D geometric primitives are given, and the notation used is described
below,



= contained area

A

P = perimeter distance
V' = contained volume
S

= surface area
X, y,z = center of mass

X, v,z = centroid
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I,1,1 = moment of inertia of area (or second moment of inertia)

y oz

AREA PROPERTIES:
I, = [y'da =
A
(24—
]y = .[x dA =
A

Xy
A

the moment of inertia about the y-axis

the moment of inertia about the x-axis

I = IxydA = the product of inertia

Jo = j-rsz = I(x2+y2)dA =L+ = The polar moment of inertia

4
J-di
o4 _
IA
A
J‘ydA
y=4—-=

L —
N

centroid location along the x-axis

centroid location along the y-axis
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Rectangle/Square: yA
A = ab
P =2a+2b a
»
g -
b
Centroid: Moment of Inertia Moment of Inertia
(about centroid axes): (about origin axes):
b 7 bd ; _bd
X = 5 X 12 X 3
7 = 173_0 J = bla
p = ¢ T yo3
Y72
2 2
— _b'a
I, =0 I, = T
Triangle:
bh
A = =
2
P =
Centroid: Moment of Inertia Moment of Inertia
(about centroid axes): (about origin axes):
g = 4tb 3
3 7o bl ; _bK
BV T
Y3 bh bh
- 2 ;2 2,2
]y 36(a b”—ab) I, 12(a b”—ab)
2 2
o= b, _ b s
I = - (2a->b) 1 4 (2a-0>)

Xy Xy



Circle:
A= nrz
P =2nr
Centroid:
X =r
y=r
Half Circle:
nr2
A =
2
P =nr+2r
Centroid:
X =r
o 4r
Y 3w

page 318

Moment of Inertia

(about centroid axes):

7o
yo4
Ix_y:o

Moment of Inertia
(about origin axes):

Moment of Inertia
(about centroid axes):

7 o_(n_8)4
Ix—(g 9 r
T ’}U”4
=%
I, =0

Moment of Inertia
(about origin axes):

4
sz%
, o
A
I, =0



Quarter Circle:
nr
A -
4
P = g +2r

Centroid:
L4
3n
- 4r
Y 3n
Circular Arc:
_ o’
2
P =0r+2r
Centroid:
2rsin9
= 2
30
y=0
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y A

Moment of Inertia

(about centroid axes):

I. = 0.05488+"
I, = 0.05488 "
I, = _0.01647/"

Moment of Inertia

(about centroid axes):

X
I, =

Ixy =

X

-

Moment of Inertia

(about origin axes):
4

nr
L= 7%
nr
I = —
Y 16
r4
[xy = g

Moment of Inertia
(about origin axes):

4
I = %(6 —sin0)

4
I = %(e+ sin0)
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Moment of Inertia
(about origin axes):

Ellipse: v,
A = nrr,
T [2 2
5 ritr
P = 4r1j2 Jl N L 266in0)2d0
0 a
2
Pe2n (1112
2
Centroid: Moment of Inertia
(about centroid axes):
3
xX=r — T,
2 Ix — 1
r r3
= = _ 172
y =r Iy = )
[xy =
Half Ellipse: vA
Ty,
2
T [2 2
5 r,+tr
P=2r Jl L 2(5in0)°do +2r,
0
f 2 2
r{t+r
P~ 1 24 2r2
2
Centroid: Moment of Inertia
(about centroid axes):
X =1, _ 5
I, = 0.05488r,r]
o 4r, B ;
Y= 35 Iy = 0.05488r,r,

I, = ~0.01647r,r,

Moment of Inertia
(about origin axes):

_ nrzrl
L= 6
RF3V

_ 271
L= 6
}/_2}/_2

S
b=
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Quarter Ellipse: y

nryry

r
T 2 2
5 Jrit+r
P = rlﬁ/l— la 2(sin0)°d0 +2r,

Centroid: Moment of Inertia Moment of Inertia
(about centroid axes):  (about origin axes):
_ 4r, _ 3
X =37 I, = I. = mryr
ary I = I = nrr
J_/ = 3— y y 271
" o
] = =21
[xy B [xy - ]
Parabola: vA
A = %ab
a
_JBP+ 164 b, (da+ B+ 164
P="2 20 2y
2 8a b *
- 5 |
Centroid: Moment of Inertia Moment of Inertia
(about centroid axes):  (about origin axes):
_ b T _
X=3 I, = I =
__ 2a I = I =
YT
- ;-

Xy Xy
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Half Parabola: vA
ab
A = —
3
a
_JBP+16a b, [da+ b+ 164
P=~—+—In X
4 16a b >
b
Centroid: Moment of Inertia Moment of Inertia
(about centroid axes): (about origin axes):
B 3b I_ _ 8ba3 ] = 2ba3
rT g x 175 x 7
7 _ 19’ ;- 2ba
= Z?a y 7480 ST
- b2a> . 24>
w60 w6

* A general class of geometries are conics. This for is shown below, and can be used to represent
many of the simple shapes represented by a polynomial.

Ax* +2Bxy+ Cy* +2Dx+2Ey+F = 0

Conditions A=B=C=0

B=0,4=C
B - AC<0
B -AC =0
B —AC>0

straight line
circle
ellipse
parabola

hyperbola
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VOLUME PROPERTIES:
I = J.rxzd V' = the moment of inertia about the x-axis

I = Iry dV = the moment of inertia about the y-axis
14

2 . ) )
I = Irz dV = the moment of inertia about the z-axis
|4

= centroid location along the x-axis

Ide

~

=

= centroid location along the y-axis
[ av

<

zdV

—

1
~

= centroid location along the z-axis

N —
L
~



Parallelepiped (box):
V = abc

S = 2(ab+ac+bc)

Centroid:
;=4
2
__b
Y72
5= ¢
2
Sphere:
V= gnr3
S = 4Ttr2
Centroid:
X =r [x
I
y=r g
I

V4

Moment of Inertia
(about centroid axes):
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X
™
Moment of Inertia Moment of Inertia
(about centroid axes): (about origin axes):
— M(d +b) _
T kT
] = M I =
y 12 y
1— _ M(bz‘f‘az) ] =
S e
yA .
Z
» X

Moment of Inertia
(about origin axes):

. 2Mr2 .

= = I =

B 2Mr2 ;=

= = =

_ 2Mr2 ;=
5 z



Hemisphere:
V= %mﬁ
S =

Centroid:
X =r
¥
YT
zZ=r

Cap of a Sphere:

v = %nh2(3r—h)

S = 2nrh
Centroid:
X =r
j} =
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Moment of Inertia
(about centroid axes):

- 83 2
e = 5™
[_ _ 2]\4]’2

yo 5

- 83 2
I, = 320Mr

Moment of Inertia
(about origin axes):

I =
I, =
I =
S
$h
V4

Moment of Inertia
(about centroid axes):

sz
Iy=

I =

z

Moment of Inertia
(about origin axes):

I =

X



Cylinder:

V = hnr2

S = 2mrh + 27

Centroid:
X =r
__h
)
zZ=r

Cone:

V = %nrzh

S = TEI’/\/I”Z + h2

Centroid:
X=r
__h
=3
z=r

Moment of Inertia
(about centroid axis):

— h r ) (h r )
= —_ 4+ = = 4+
I M(12 4 L=M 3 4
2
- _ Mr _
== ly =
2 2 2
— h rj (h r )
L M(lz 4 L=M 3 4
vA
h
= —
Moment of Inertia Moment of Inertia
(about centroid axes): (about origin axes):
3 2
— 3 3r )
= — + — =
& M( &80 20 L
2
- _ 3Mr _
Iy 10 ]y N
3 2
- 3h™ 3r )
= —_— + P =
L M( 80 20 L
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Moment of Inertia
(about origin axis):

2 2 2 2
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Tetrahedron:
1
V ==A4h
3
» X
Centroid: Moment of Inertia Moment of Inertia
(about centroid axes): (about origin axes):
X = Ix = Ix -
y = é Iy - Iy -
4
z = L= =
Torus: y‘
1 "2
2 2
V= " (ry Try)(ry—r))
Z
_ 2,2 2
S=n(ry-r) > X
Centroid: Moment of Inertia Moment of Inertia
(about centroid axes): (about origin axes):
X=r I, = I =
. rp—r 1) I = ] =
Y ( 2
I - I -

N
Il
N
\]
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Ellipsoid: vA
4 'y I3
Z rl
- X
|
Centroid: Moment of Inertia Moment of Inertia
(about centroid axes): (about origin axes):
X =r 1 Ix N Ix -
I_ = I =
y=r g Y
. I, = I, =
z = 7"3
Paraboloid: vA
V= %nrzh L
z
S = r X
>
Centroid: Moment of Inertia Moment of Inertia
(about centroid axes): (about origin axes):
X =r ]X - Ix =
y = b= =
i I, = I =
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5.2 Problems

5.2.1 Challenge Problems
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6. FINANCIAL

Topics:

Objectives:

6.1 Introduction

* The primary object of a public corporation is to generate the maximum amount of profit possi-
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ble. A simple model is shown below.

Supplier
—-
Invoi products/services
nvoices
(AP)
Inventory, ' .
(S) Business Operating Expensesﬁ))
Profits (P) >
Taxes (T) >
>
Receivables
(AR products/services
-
Customer
T = 05P (assumes 50% tax on profit)

z = AR-AP-O-P-T =0

SJAR—-AP-O-P—-05P =0
AR—-AP -0

S P = 5

* Operating expenses include a number of factors such as,
- Depreciation on capital equipment
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- Wages/salaries

* When cash flow occurs over a number of years it is often shown with cash flow diagrams.

A
L

* When considering the economic value of a decision, one method is the payback period.

C
N =1

Sy
where,

C, = initial investment ($)
S, = savings per year ($/yr)
N = payback period (years)

+ Simple estimates for the initial investment and yearly savings are,

Cp = Cp—Ig
where,
Cp = cost of new equipment
I = revenue from sale of old equipment (salvage)
Sy = (LoHy—LHy) + (Mg~ M)
where,

Ly, L, = labor rate before and after

H,, H, = labor hours before and after

M, M, = maintenance costs before and after
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* There are clearly more factors than can be considered, including,
- changes in material use
- opportunity cost
- setup times
- change in inventory size
- material handling change

* The simple models ignore the conversion between present value and future value. (ie, money
now is worth more than the same amount of money later)
PW = Cy+ 2[(RAJ— CA/A)(P/F, i,j)]

1+4)' -1

(P/F,i,j) = (P/A,i,n) = 3 (P/F,ij) = ( -
i(1+1)

(1+i)
where,

PW = present worth of the money (in todays dollars)
R, = Annual revenues (income) for year j

J

C, = Annual costs (expenses) for year j
J

Jj = j years in the future

i = interest rate (fractional)

n = number of years for consideration

* The future value of money can be evaluated using,
F = P(F/P,i,n) (F/P,i,n) = (1+i)"
where,

FW = future worth of the money

e.g.,
i=5% P = 1000 n =73

F = P(F/P,i,n) = 1000(F/P,5%,3) = 1000(1 +0.05)° =

* Quite often a Rate of Return (ROR) will be specified by management. This is used in place of
interest rates, and can include a companies value for the money. This will always be higher
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than the typical prime interest rate.

* So far we haven’t considered the effects of taxes. Basically corporate taxes are applied to profits.
Therefore we attempt to distribute expenses evenly across the life of a project (even though the
majority of the money has been spent in the first year). This distribution is known as deprecia-
tion.

A=B-T=B—(tax,, C) = B(1—tax, )+ Dtax

rate rate rate

where,

A = after tax cash ($/yr)
B = before tax cash ($/yr)
D = depreciation of equipment ($/yr)

tax = the corporate tax rate

rate
» Methods for depreciation are specified in the tax laws. One method is straight line depreciation.

CE_IS

n

D =
where,

D = The annual depreciation

* Another methods is the accelerated cost recovery (ACRS) method that is based on US tax law. A
similar version is the Modified ACRS (MACRS) system.
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D, = The annual depreciation for year |

JC. = the depreciation factor for year j

recovery % for a given depreciation period

year 3yrs 5 yrs 7 yrs 10 yrs
1 333 20.0 14.3 10.0
2 44.5 32.0 24.5 18.0
3 14.8 19.2 17.5 14.4
4 7.4 11.5 12.5 11.5
5 11.5 8.8 9.2
6 5.8 8.9 7.4
7 8.9 6.6
8 4.5 6.6
9 6.5
10 6.5
11 3.3

(copied from Lindberg FE Review Manual)

* The "book value’ for an item is calcuated as,

BV = C—ZDJ.

* Rate of Return (ROR) Analysis -
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* Present worth analysis shifts all of the future costs and incomes into a present day sum.

* Benefit Cost Analysis for chosing between alternatives, All costs must be converted to the
present values.

B2 - Bl . .
—_—>1 Choice 2 is better than 1
C2 - Cl

* Break Even Analysis

C—-PBP x NAP

where,

PBP = Payback period
NAP

Net annual profit

* Return On Investment,

ROI = B;CCMO%

* Consider an assembly line that is currently in use, and the system proposed to replace it. The
product line is expected to last 5 years, and then be sold off. The corporate tax rate is 50% and

the company policy is to require a 17% rate of return. Should we keep the old line, or install
the new one?
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Current Manual Line:

- used 2000 hrs/yr with 10 workers at $20/hr each
- maintenance is $20,000/yr

- the current equipment is worth $20,000 used

Proposed Line:

- the equipment will cost $100,000 and the expected salvage value at the end of the
project is $10,000

- 2 workers are required for 1000 hours year at $40/hr each

- yearly maintenance will be $40,000

6.2 Problems

1. If $100,000 were borrowed for 3 years at a %10 interest rate, how much would be due at the
end of the loan. (ans. $133,100)

2. I£ $100,000 were borrowed for 3 years at a %10 interest rate, how much would be due at the
end of the loan if $20,000 were repaid each year. (ans. $66,900)

3. A machine was purchased for $100,000 and generates $20,000 per year income. How many
years would be required to break even if the company charged a 10% internal interest rate. (ans.
7.27 yrs)

4. If a machine is purchased for $100,000 and the company charges %10 for the use of money,
what annual return is required for the machine to break even in 3 years. (ans. $40,211.49)
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5. A machine costs $100,000 and will be sold for salvage value in 3 years for $30,000. What is
the Equivalent Uniform Annual Cost for the machine assuming the company uses an interest rate
of 10%? (ans. $31,148.69)

6. A machine costs $100,000 and will be sold for salvage value in 3 years for $30,000. The
alternative is to lease a machine for $40,000 per year. If the company uses an interest rate of 10%
which option should be chosen? (ans. purchasing is a better option)

7. An existing manual production line costs $100,000 to operate per year. A new piece of auto-
mated equipment is being considered to replace the manual production line. The new equip-
ment costs $150,000 and requires $30,000 per year to operate. The decision to purchase the
new machine will be based upon a 3 year period with a 25% interest rate. Compare the present
value of the two options. (ans. PVmanual $195,200, PVnew $208,560)

8. Write a general computer program to solve the following project costing problem. Test the pro-
gram using the numbers provided. The program should accept the initial cost of equipment (C), an
annual maintenance cost (M), an annual income (R), a salvage value (S), and an interest rate (I).
The program should then calculate a present worth and the ROL.

Test values:

C = 100, 000
M = 20,000
R = 150, 000
S = 10,000

I =10%

L = 3yrs

9. Write a program that determines the ROI for a project given the project length, initial cost,
salvage value, and projected income. To test the program assume that the project lasts for 36
months. The company standard interest rate is 18%. The equipment will cost $100,000 new and
have a slavage value of $10,000. The annual income will be $50,000.

6.3 Challenge Problems

1. Consider Moore’s law that predicts that every 18 months the basic speed and capacity of semi-
conductors will double. We have a customer that wants......
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7. OPTIMIZATION

Topics:

Objectives:

7.1 Introduction

* This is normally used when there is no clearly optimal solution to a problem.

* The basic procedure is,
1. Idenitfy the major variables in a decision
2. Model the system or decisions to be made with equations
3. Assign a cost (objective) function for the system
4. Select an optimization method and search
5. Analyze the results and search again if necessary

7.2 System Modeling and Variable Identification

* Typical decision variables in systems include,
- mass
- volume
- power consumption
- component cost
- factor of safety
- signal-to-noise ratio
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- transmission rates
- etc.

* A model of the system should relate the decisions to be made mathematically. These relation-
ships oftem include performance measures,
- cutting speeds
- cycle times
- power
- capacity
- flow rates
- etc.

7.3 Cost Functions and Constraints

* Cost functions quantify things that we want to minimize, or maximize. These
should be aligned with system objectives. Typical cost functions include,

- money
- time
- some combination of factors

* Systems also have constraints that limit available solutions

» Expressed as a function of variables that provides a value

* Consider the example of building a fenced pasture. In this case when the area
becomes too large, there is a reduced value. We want to maximize the value of V.
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$
Cfence = 20(’71)) (2w +2d)
where,

C fence = COst to construct the fence (§)

w = width of the pasture (m)

d = depth of the pasture (m)
$
Cland = 0.35(_2)
m
where,

C,,na = cost for the land

R = o.os(%)wd wd < 300m>
m’y

_ $ 2 2

R = 0.01{ =—)(wd —300m") + 60$ wd > 300m
m’y

where,

R = revenue generated by pasture land
V=R- Cfence o Cland

where,

V' = total value

Figure 1.29  Example cost function for building a fence around a pasture

» The cost function can be written as..
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double cost(double w, double d){
double value;
double cfence, cland, R;

Cfence = 40*(w + d);
Cland = 0.05*w*d;

if (w*d <300){

R=0.05*w * d;
} else {

R=0.01* (w *d-300) + 60;
§

value = R - Cfence - Cland

return value;

Figure 1.30 A subroutine for cost function calculation

» Constraints are boundaries that cannot be crossed.

» Example of constraints, the pasture cannot be larger than one 1600m be 1600m

beacuse of the constraints of an existing road system.

w < 1600m

d < 1600m

Figure 1.31  Example constraint functions for a pasture

» The cost function can be written as..
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double cost(double w, double d){
double value;
double cfence, cland, R;

Cfence = 40*(w + d);
Cland = 0.05*w*d;

if (w*d <300){

R=0.05*w * d;
} else {

R=0.01* (w *d-300) + 60;
H

value = R - Cfence - Cland

if(w > 1600) value = 1000000;
if(d > 1600) value = 1000000;

return value;

Figure 1.32 A subroutine for cost function calculation

» Slack variables allow constraints to be considered as part of the cost function.
Helps with a system with many local minimum.

4 4
w d ,,)
=|— +|—
Cpenalty (1600m) (1600

V=R- Cfence o Cland_ Cp

enalty

Figure 1.33  Example of slack variables for including constraints

* The cost function can be written as..
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double cost(double w, double d){
double value;
double cfence, cland, R;
double slack;

Cfence = 40*(w + d);
Cland = 0.05*w*d;

if (w*d <300){

R=0.05*w*d;
} else {

R=0.01 * (w *d-300) + 60;
b

// slack variable
slack = pow((w/1600), 4) + pow((d/1600), 4);
value = R - Cfence - Cland - slack;

return value;

Figure 1.34 A subroutine for cost function calculation

7.4 Single Variable Searches

* For simple single value problems use derivatives and find the maxima/minima.

7.4.1 Example Problem

» As with most engineering problems we want to get the highest return, with the minimum invest-
ment. In this case we want to minimize costs, while increasing cutting speeds.

* EFFICIENCY will be the key term - it suggests that good quality parts are produced at reason-
able cost.

* Cost is a primarily affected by,
- tool life
- power consumed

* The production throughput is primarily affected by,
- accuracy including dimensions and surface finish
- mrr (metal removal rate)
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* The factors that can be modified to optimize the process are,
- cutting velocity (biggest effect)
- feed and depth
- work material
- tool material
- tool shape
- cutting fluid

» We previously considered the log-log scale graph of Taylor’s tool life equation, but we may also
graph it normally to emphasize the effects.

cutting
VG]OCI‘y

This graph is representative for most reasonable cutting
speeds. The velocities at the high and low ranges do
not necessarily exhibit the same relationship.

> tool life

* There are two basic conditions to trade off,
- Low cost - exemplified by low speeds, low mrr, longer tool life
- High production rates - exemplified by high speeds, short tool life, high mrr
*** There are many factors in addition to these, but these are the most commonly consid-
ered
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tool

cost per A total cost
unit cost
volume

cutting

cost

gverhead
minimum cutting speed

cost

* A simplified treatment of the problem is given below for optimizing cost,
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First lets look at costs for a cutting tool over the life of a tool,

C, =c tecy,tcey
where,
C, = cost per cutting edge
c; = the cost to change a tool
¢, = the cost to grind a tool per edge
c3 = the cost of the tool per edge
and,
¢y = xR,
RS
N,
Cr
C =
3 Ny x(N,+1)
where,
t; = tool change time
t, = tool grind time in minutes
R, = cutting labour + overhead cost
R, = grinding labor + overhead cost
Ct = cost of the original tool
N, = the number of cutting edges to grind
N, = the maximum number of regrinds
and,
C.=R.xT
where,

C. = cutting operation cost over life of tool, per edge
T = tool life
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Next, lets consider the effects of metal removal rate,

Or=VxTxfxc M)

where,

Q1 = metal removal rate per edge
V = cutting velocity

f = tool feed rate

¢ = depth of width of the cut

consider the life of the tool,
VxT' = C (Taylors tool life equation)
)
=X
T

Now combine tool life (2) with the mrr (1),

Cxfxc
Tn—l

Or = VxTxfxc=%><Txf><c=

At this point we have determined functions for cost as a function of tool life,
as well as the metal removal rates. We can now proceed to find cost per unit
of material removed.

N 7!
w Or C Cxfxc

Using some basic calculus, we can find the minimum cost with respect to tool life.

(R,xT+C))

dCu_( ]

- )(chnxTn_lJrCtx(n—l)xTn_z)=O

Cxfxc

SRoxnxT = -C,x(n—1)

L —C,x(n—-1) _ gt(l;l’l)

* We can also look at optimizing production rates,
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There are two major factors here when trying to increase the mrr. We can
have a supply of tools by the machine, and as the tools require replacement,
the only down-time involved is the replacement of the tool.

This gives us an average rate of production,

P T+t
where,
R, = average rate of production

recall from before that,

Cfc
QT = Tnf—l
now substituting in gives,
_ -1
e Cfe(T" +1,)

We can now optimize the production rate,

‘%’ = Cfe[—(T"+1,) + T +1)(T"+1,) 1= 0

.-.(7”+t1)_2 = (nTn_lthl)(Tn+t1)_l
= " )T )
sl = nTzn_l-FntlTn_l-f—tlTn-i-t%

~log(1) = log(nT" ") +log(nt, T~ ") + log (¢, T") + log(£})

-0 = log(n) + (2n - Dlog(T) + log(nt,) + (n— 1)log(T) + log(t,) + nlog(T) + log(£})
5.0 = 2log(n) + (4n—2)log(T) + 4log(¢,)

_ log(n) +2log(#))
- 1-2n

~dog(7)
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* We can now put the two optimums in perspective,

Since, t; < C{/R_ then tool life for maximum production is less than economical tool life
and as a result, cutting velocity for maximum production is > velocity for lowest cost

cost

A

> cutting velocity
minimum|
cost
production < »>—high efficiency range
rate
> cutting velocity
maximum|
rate

7.5 Multivariable Searches

* Local Search Space

* A topographical map shows the relationship between search parameters and cost
values.
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Maximum (or minimum) Search path
Objective Space /

Constraints

-

Figure 1.35  Local searches

* Global Search space. In this case the system becomes ’stuck’ in a local mimina.
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Local Optima Global Optima

N
N\

7

!‘f]’l

Figure 1.36  Global searches

* Global Search space. In this case the system searches all maxim.
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Local Optima Global Optima

N

Figure 1.37 A Global Search

7.5.1 Algorithms

* The search algorithms change system parameters and try to lower system param-
eters.

* The main question is how to change the system paramters to minimize the system
value.

7.5.2 Random Walk
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7.5.3 Gradient Decent

7.5.4 Simplex

1.6 Summary

1.7 Problems

1. A production facility molds plastic parts. Ideally these parts are made with new plastic pellets.
However rejected plastic parts are ground into (regrind) pellets and mixed in with new plastic pel-
lets. New plastic costs $1.00 per pound. If a part is discarded (not reground) the total cost of the
material is lost. To regrind and dry scrap parts there is a cost of $0.10 per pound. The customer
demands that the percentage of regrind cannot exceed 30%. Statistical data was used to find the
following relationship between the percentage of regrind and the scrap rate. Write a program to
determine the optimum quantity of regrind to minimize the cost per part.

R+5

§=20+30x2 *

where,

R = percentage of reground material [0, 100%]

S = percentage of parts that are scrap

1.8 Challenge Problems

1. Rocket Fuel Burn

2. Power plant fuel mixture
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3. Write a program that recommends the optimum cutting speed for a machining process. Model
the program on the example in the chapter.
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2. PROJECT SCHEDULING

Topics:

Objectives:

2.1 Introduction

2.2 Gantt Charts

* General form,

dates

tasks

tasks flow
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* tasks
start end
task 1 I I
‘milestone
task 2 |
I handoff
y
task 3 |
|

* These charts should be updated on a regular basis to track the progess and completion of each
task.

* Things to look for when doing Gannt charts include,
- gaps when no tasks are boing done
- too many concurrent tasks
- too much/too little detail (charts can be broken into subcharts to isolate detail)
- associate people and resources to tasks

* Good ideas when constructing Gantt Charts,

- identify critical paths and move forware to create slack time
- delay costly components to reduce WIP

2.3 Critical Path Method (CPM)
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* Tasks (possibly from a Gannt chart) can be put in a network diagram.

Q Event (0 time but acts as a start/end)
> activity
- - dummy task/constraint (0 time)

* Earliest Start (ES) the earliest time a task can start.

* Minimum Project Duration - the shortest time to complete the project based upon the longest
path.

* Desired Project Duration - the planned time for completing the project.
» Latest Start (LS) - the latest a task can start for a Desired Project Duration.
* Total Float (TF) =LS - ES

» Critical Path - the sequence of tasks that take the longest, and dictate the Minimum Project
Duration.
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2.4 Program Evaluation and Review Technique (PERT)

* In CPM we assume that each activity has a fixed time, in practice the task lengths vary. This

variation can be shown with the Beta distribution.

f(t)

where,
t, = optimistic time estimate

t,, = most likely time estimate

t = pessimistic time estimate

» task times are expressed with three numbers separated by dashes to-tm-tp to represent task
times.
* the mean (effective) time can be found with,

. t,+4t, 1,
e 6

* A Standard Deviation for each activity time can be approximated using,

t —t

Di 0;
6

* The te valuaes can be used to do a CPM analysis of a network diagram. Once the Critical Path is
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identified the overal task time and variance can be calculated using,

* To find the chance that the process will be done by the time Ts, the z value can be calculated.
The z value can then be used to find the probability of completion using the cummulative nor-
mal distribution function.

2.5 Problems

1. A new building is being constructed and the following tasks are required. The normal workdays
are 7am-3pm, Monday to Friday. Overtime is possible, however the costs make it highly unde-
riable. Write a Gantt chart for completion of the job in 3 months.

Site Preparation - 1 month

Foundations - 1 month - after Site Preparation
Framing - 2 weeks - after Foundations
Plumbing - 5 weeks - after Framing
Electrical - 6 weeks - after Framing
Inspection - after Plumbing and Electrical
Drywall - 2 weeks - after Inspection

Painting - 1 week - after Drywall

Hardware - 1 week - after Painting

Carpet - 3 days - after Painting

2. Develop a project activity network for problem 1.
3. Identiy the critical path for problem 2.

4. Consider the PERT network diagram below and find the likelyhood that the project will be
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complete in 40 days.

10-11-12

3-7-9

13-15-19

5. For problem 4, find a target completion date for the project that will make it 50% likely that it
will be complete.

2.6 Challenge Problems
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3. DIRECTED GRAPHS

Topics:

Objectives:

3.1 Introduction

* Graphs are normally data structures that have vertices (circles) and edges (lines) as shown
below.
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* In a directed graph the edges will have a direction assigned, as shown below.

3.2 Data Structures

* A simple data structure for representing a graph is shown below.

Vertex list: Edge list:
Vertex Edge From To




* Consider the graph below.

Vertex list:
Vertex

DN B W N =
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E
2
D
F
Edge list:
Edge From vert. To vert.

A WNDDN ==

DN O B W W



page 365

* Representing a graph in Scilab

function foo
foo =
A =
cnt =
for 1

end

if fo
endfunction
vertex_names
function foo

foo =
endfunction

edge_names =

function foo

foo =
endfunction
edge = [edge_.
edge = [edge
edge = [edge
edge = [edge
edge = [edge
edge = [edge

size(_list);

= find index(_list, name)
-1;

// a function to find list numbers given names
// use -1 to indicate no match found yet
// find the rows and columns in the list

A(l, 1); // get the rows in the list
=1 cnt, // loop through the rows
if name == _list (i) then // look for a name match
foo = i; // record the matching row number
break; // no point continueing the for loop
end,
== -1 then mprintf ("ERROR: list name $%s not found\n", name); end
= ["1i" "o n3n 4 "5"]; // define the vertices
= vert number (name) // a function to find vertex numbers given names

find_index (vertex_names, name);

["B" e "p" "E" "E" "G"]; // define the edges.
= edge number (name) // a function to find edge numbers given names

find_index (edge_names, name) ;

number ("B"), vert_ number("1"), vert_number("Z")];
; [edge_number ("C"), vert number("1"), vert number ("3")]]
; l[edge_number ("D"), vert number ("2"), vert number("3")]];
; [edge_number ("E"), vert_number ("2"), vert_ number ("4")]];
; [edge_number ("F"), vert number ("3"), vert number ("5")]]
; [edge_number ("G"), vert number ("4"), vert number ("5")]]

;

"
;

;



* Representing a graph in C
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int find number (char list[][], char *name) {
int i
if (name == NULL) return -1;
for(i = 0; 1list[i][0] != NULL; i++){
if (strcmp (name, list[i]) == 0){
return 1i;
}
}
printf ("ERROR: search name %s not found \n", name);
return -1;
}
char vert names([][] = {{"1"}, {("2"}, {("3"}, {("4"}, {"5"}, NULL};
int vert number (char *name){ return find number (vert names, name);}
char edge names[][] = {{"B"}, {("C"}, {"D"}, {"E"}, {"F"}, {"G"}, NULL};
int edge number (char *name){ return find number (edge names, name);}

#define MAX EDGES

10

int edge cnt = 0;

int edges [MAX_EDGES] [3];

void add_edge (char *edge, char *from vert, char *to_vert) {
edges[edge_cnt][O] = edge_number (edge) ;
edges[edge_cnt] [1] = vert number (from vert);
edges[edge cnt] [2] = vert number (to vert);
edge_cnt++;

}

int main () {
add_edge ("B", "1", "2");
add_edge ("C", "1", "3");
add_edge ("D", "2", "3");
add_edge ("E", "2", "4");
add edge ("F", "3", "5");
add_edge ("G", "4", "5");

return 0;
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3.3 Applications

3.3.1 Precedence Identification

* To determine a precedence we add a precedence count for each vertex. The basic check is,
1. Set all the precendence values to 1 (lowest precedence)
2. Cycle through and check each edge. For each edge ensure that the "to” vertex has a pre-
cedence that is at least one greater than the *from vertex.

* Consider a Network Diagram for a CPM problem.

code

review permit approval

ermit application (6
check codes (3) P PP ©

\

\ inspections (7)
\review

\

write spec ( build (6)
ui

spec approval signoff
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* The algorithm implemented in Scilab (assuming the *find_index’ function is the same as before)

vert _names = ["launch" "code review" "spec approval" "permit approval" "signoff"]; // vertices
A = size(vert names); // find the rows and columns in the list

vert_cnt = A(l, 1); // get the rows in the list

edge names = ["check codes" ; "write spec" ; "permit application" ; "review" ; "build" ; "inspections"];

/ define the edges.

columns in the list
list

A = size(edge_names); // find the rows and
edge cnt = A(1, 1); // get the rows in the
[/ ====== Previous Code —--——--—-——=-—-—-——-————

function foo =

foo = -1;

A = size(_list);
cnt = A(1, 1);
for 1 =1 cnt,

find_index(_list, name)

// a function to find list numbers given names

// use -1 to indicate no match found yet

// find the rows and columns in the list
// get the rows in the list

// loop through the rows

if name == 1list (i) then // look for a name match
foo = i; // record the matching row number
break; // no point continueing the for loop
end,
end
if foo == -1 then mprintf ("ERROR: list name %s not found\n", name); end
endfunction

function foo = //

vert_number (name)

a function to find vertex numbers given names

foo = find index(vert names, name);
endfunction
function foo = edge number (name) // a function to find edge numbers given names
foo = find index(edge names, name);
endfunction
/)= — oo
// Note: an extra column is added to include the time for each activity
edge = [edge number ("check codes"), vert number ("launch"), vert number ("code review"), 3];
edge = [edge ; [edge_number("write spec"), vert_number ("launch"), vert number ("spec approval"), 211;
edge = [edge ; [edge_number ("permit application"), vert number ("code review"), vert number ("permit
approval"), 611;
edge = [edge ; [edge_number("review”), vert_number ("code review"), vert_number ("spec approval"), 011;
edge = [edge ; [edge_number ("build"), vert number ("spec approval"), vert number ("signoff"), 6]];
edge = [edge ; [edge number ("inspections"), vert number ("permit approval"), vert number ("signoff"), 7]];

// initialize all precendence values to 1

precedence = [1];
for i = 2 vert_cnt,

precedence = [precedence ; 1];
end

// Loop through and update precendences
for 1 =1 edge cnt - 1,
for j =1 edge_cnt,
prev_vert =
next vert =
prev_precedence

edge

previous/next vertices
next precedence =

(3
edge (J,

2);
3)i
precedence (prev_vert) ;

// find the previous and current vertices
// find the precendence of

precedence (next vert);

if (prev_precedence + 1) > next precedence then // check to see if the

precedence needs to be updated

precedence (next_vert)

end,
end,

3.3.2 Graph Searching

= prev_precedence + 1;

/
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* Identifying the vertex costs.

// Assumes the code for vertices has already been defined and run.

// initialize all vertex cost values to 0

cost = [0];

for i = 2 : vert_cnt,
cost = [cost ; 0];

end

maximum cost = 0;

last_vert = 0;

// Loop through and update precendences
for i = 1 : edge cnt - 1,
for j = 1 : edge_cnt,

prev_vert = edge (]
next vert = edge(j, 3);
edge_cost = edge(j, 4);
prev_cost = cost(prev_vert); // find the cost of previous/next vertices
next cost = cost(next vert);
if (prev_cost + edge_cost) > next_cost then // check to see if the cost

, 2); // find the previous and current vertices

needs to be updated

cost (next vert) = prev_cost + edge cost;
end,
if cost(next_vert) > maximum_cost then
maximum cost = cost (next vert);
last_vert = next_vert;
end

end,
end

mprintf ("The critical path cost is %f \n", maximum cost);

3.4 Other Topics
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» ADD: resource limited plans

1.5 Summary

1.6 Problems

1. Write a general program that will accept a network diagram entered as vertices and arcs. The
program will then do a PERT analysis to determine the Te value and the standard deviation.
Test the program with the following network diagram.

15-16-18

(ans. Te=42.333, S.D.=1.826)

1.7 Challenge Problems
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2. TREE DATA STRUCTURES

Topics:

Objectives:

2.1 Introduction

* Trees are a special case of a graph data structure. The connections radiate out from a single root
without cross connections.

* The tree has nodes (shown with circles) that are connected with branches. Each node will have a
parent node (except for the root) and may have multiple child nodes.

L

root

c o

leaves
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* In an unordered tree the children of a node can be unordered, however in an ordered tree the
children take priority, often by listing them in order.

* A Boolean tree applies operators for each of the nodes

2.2 Data Structures

* A simple data structure for representing a tree is shown below.

Node list: Branch list:
Node Parent Child
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* Consider the graph below.

root

C F

leaves
Node # | Node Name ]
Parent Child
* Representing a tree in Scilab

function foo = find index(_list, name) // a function to find list numbers given names

foo = -1; // use -1 to indicate no match found yet

A = size(_list); // find the rows and columns in the list

cnt = A(l, 1); // get the rows in the list

for i = 1 : cnt, // loop through the rows

if name == _1list(i) then // look for a name match
foo = i; // record the matching row number
break; // no point continueing the for loop
end,

end

if foo == -1 then mprintf ("ERROR: list name $%s not found\n", name); end
endfunction
node names = ["A" ; "B" ; "C" ; "D" ; "E" ; "F"]; // define the nodes
function foo = node number(name) // a function to find node numbers given names

foo = find_index(node_names, name);
endfunction
branch = [node_number ("A"), node_number ("B")];
branch = [branch ; [node_number ("A"), node_number ("C")]];
branch = [branch ; [node number ("B"), node number ("D")]];
branch = [branch ; [node_number ("C"), node_number ("E")]];
branch = [branch ; [node_number ("C"), node_number ("F")]];



page 374

* Representing a graph in C

int find number (char list[][], char *name) {
int i
if (name == NULL) return -1;
for(i = 0; 1list[i][0] != NULL; i++){
if (strcmp (name, list[i]) == 0){

return 1i;
}
}
printf ("ERROR: search name %s not found \n", name);
return -1;

}

char node _names[][] = {{"A"}, {"B"}, {"C"}, {"D"}, {"E"}, {"F"}, NULL};
int node number (char *name){ return find number (node names, name);}
#define MAX BRANCHES 10
int branch_cnt = 0;
int branch [MAX BRANCHES] [2];
void add_branch (int parent, int child) {
branch[branch_cnt] [0] = node number (parent) ;
branch[branch cnt] [1] = node number (child);

branch_cnt++;

}

int main () {

add_branch ("A", "B");
add_branch ("aA", "C");
add_branch ("B", "D");
add_branch("C", "E");

( )

add_branch("Cc", "F");

return 0;

2.3 Applications

2.3.1 Precedence Identification

* To determine a precedence we add a precedence count for each node. The basic check is,
1. Set all the precedence values to 1 (lowest precedence)
2. Cycle through and check each branch. For each branch ensure that the child vertex has a
precedence that is one greater than the parent vertex.
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function foo = find index( list, name) // a function to find list numbers given names
foo = -1; // use -1 to indicate no match found yet
A size(_list); // find the rows and columns in the list

cnt = A(1, 1);

// get the rows in the list

for 1 =1 cnt, // loop through the rows
if name == _list (i) then // look for a name match
foo = i; // record the matching row number
break; // no point continueing the for loop
end,
end
if foo == -1 then mprintf ("ERROR: list name $%s not found\n", name); end
endfunction
node names ["a" ; "B"™ ; "C" ; "D" ; "E" "F"]; // define the nodes

node_cnt 6; // get the rows in the list

function foo = node_number (name)

foo = find_index(node_names, name);

endfunction

branch = [node_number ("A"), node_number ("B’
branch = [branch ; [node number ("A"), node
branch = [branch ; [node_number ("B"), node_
branch = [branch ; [node_number ("C"), node_
branch = [branch ; [node number ("C"), node
branch_cnt = 5;

for i=l:node_cnt,
precedence (i) = 1;
end

for i=l:node_cnt-1,
for j=l:branch_cnt,

if precedence (branch(j, 1))
precedence (branch(j,2)) = precedence (branch(j,1)

end
end
end

2.3.2 Tree Searching

// a function to find node numbers given names

"1

number ("C") 1]

number ("D") ]]

number ("E") ]1];
("F") 1]

number ("F"

// set all precendence values to 1

// loop through and update precendence values

>= precedence (branch(j,2)) then

+

1;
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» Assume that each branch has a cost associated. We can then find the cost of each of the nodes.

15

12

* Identifying the vertex costs.

function foo = find index( list, name) // a function to find list numbers given names
foo = -1; // use -1 to indicate no match found yet
A = size(_list); // find the rows and columns in the list
cnt = A(l, 1); // get the rows in the list
for i = 1 : cnt, // loop through the rows
if name == _1list (i) then // look for a name match
foo = i; // record the matching row number
break; // no point continueing the for loop

end,
end
if foo == -1 then mprintf ("ERROR: list name $%s not found\n", name); end
endfunction
node_ names [("a"™ ; "B"™ ; "C" ; "D" ; "E" ; "F"]; // define the nodes

node _cnt = 6; // get the rows in the list

function foo = node_number (name) // a function to find node numbers given names

foo = find_index(node_names, name);
endfunction
branch = [node_number ("A"), node_number ("B"), 10];
branch = [branch ; [node_ number ("A"), node number ("C")], 13];
branch = [branch ; [node number ("B"), node number ("D")], 15];
branch = [branch ; [node number ("C"), node number ("E")], 16];
branch = [branch ; [node number ("C"), node number ("F")], 12];
branch_cnt = 5;

for i=l:node cnt, // set all node cost values to 0
cost (i) = 0;
end

for i=l:node_cnt-1, // loop through and update cost values
for j=l:branch_cnt,
cost (branch(j, 2)) = cost(branch(j, 1)) + branch(j, 3);
end
end
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1.4 Summary

1.5 Problems

1. 1. Consider the following probability tree for a single day in a production facility. There is a
10% chance that *delivery late’ will occur, and an 90% chance that ’delivery on-tine’ will
occur. The values on the branches indicate the probability of an event occurring. For example,
if there is *delivery on-time’ there will be a net cost of $400 to process the incoming parts.

Write a program that will use the probabilities and costs to calculate the effective income
(expenses) for the facility.

(-10,000)

(-10,000)

delivery
Qn-time

(-100)

(ans. 66046)

1.6 Challenge Problems



	27. PREFACE
	27.1 Todo
	27.2 Problems Not Sorted

	28. NUMERICAL VALUES AND UNITS
	28.1 Introduction
	28.2 Numerical Values
	28.2.1 Constants and Other Stuff
	28.2.2 Factorial
	28.2.3 Significant Figures
	28.2.4 Scientific and Engineering Notations

	28.3 Complex Numbers
	28.4 Units and Conversions
	28.4.1 How to Use Units
	28.4.2 SI Units
	28.4.3 A Table

	28.5 Problems

	29. ALGEBRA
	29.1 The Fundamentals
	29.1.1 Basic Operations
	29.1.2 Exponents
	29.1.3 Basic Polynomials

	29.2 Special Forms
	29.2.1 Completing the Square
	29.2.2 Newton-Raphson to Find Roots

	29.3 Complex Numbers
	29.4 Equality and Inequality
	29.5 Functions
	29.6 Special Functions
	29.6.1 Logarithms

	29.7 Solving Systems of Linear Equations
	29.7.1 Substitution
	29.7.2 Addition

	29.8 Simplifying Polynomial Expressions
	29.8.1 Partial Fractions
	29.8.2 Summation and Series

	29.9 Limits
	29.10 Problems
	29.11 Challenge Problems

	30. TRIGONOMETRY
	30.1 Introduction
	30.1.1 Functions
	30.1.2 Inverse Functions
	30.1.3 Triangles
	30.1.4 Relationships
	30.1.5 Hyperbolic Functions
	30.1.6 Special Relationships
	30.1.7 Planes, Lines, etc.

	30.2 Coordinate Systems
	30.2.1 Cylindrical Coordinates
	30.2.2 Spherical Coordinates

	30.3 Problems

	31. VECTORS
	31.1 Introduction
	31.1.1 Dot (Scalar) Product
	31.1.2 Cross Product

	31.2 Problems

	32. MATRICES
	32.1 Introduction
	32.1.1 Basic Matrix Operations
	32.1.2 Determinants
	32.1.3 Transpose
	32.1.4 Adjoint Matrices
	32.1.5 Inverse Matrices
	32.1.6 Identity Matrix
	32.1.7 Eigenvalues
	32.1.8 Eigenvectors

	32.2 Matrix Applications
	32.2.1 Solving Linear Equations with Matrices
	32.2.2 Gauss-Jordan Row Reduction
	32.2.3 Cramer’s Rule
	32.2.4 Triple Product
	32.2.5 Gauss-Siedel

	32.3 Problems

	33. GRAPHING
	33.1 Introduction
	33.2 Graphing Functions
	33.3 LOG Plots
	33.4 Multiple Plots
	33.5 Other Items of Interest
	33.6 Problems
	33.7 Challenge Problem

	34. PROGRAMMING
	34.1 Overview
	34.2 Introduction
	34.3 Examples
	34.4 Summary
	34.5 Problems
	34.6 Challenge Problems

	35. PERMUTATIONS AND COMBINATIONS
	35.1 Introduction
	35.2 Permutations
	35.3 Combinations
	35.4 Probability
	35.5 Problems

	36. STATISTICS
	36.1 Introduction
	36.2 Data Distributions
	36.2.1 Histograms

	36.3 Discrete Distributions
	36.3.1 Normal Distribution
	36.3.2 Hypergeometric Distribution
	36.3.3 Binomial Distribution
	36.3.4 Poisson Distribution

	36.4 Other Distributions
	36.4.1 Polynomial Expansions
	36.4.2 Discrete and Continuous Probability Distributions

	36.5 Continuous Distributions
	36.5.1 Describing Distribution Centers With Numbers
	36.5.2 Dispersion As A Measure of Distribution
	36.5.3 The Shape of the Distribution
	36.5.4 Kurtosis
	36.5.5 Generalizing From a Few to Many
	36.5.6 The Normal Curve
	36.5.7 Probability plots

	36.6 Problems
	36.7 Challenege Problems

	37. RELIABILITY
	37.1 Introduction
	37.2 Component Failure Rates
	37.3 Serial System Reliabilty
	37.4 Parallel System Reliability
	37.5 Formal Analysis Techniques
	37.5.1 Failure Modes and Effects Analysis (FMEA)

	37.6 References and Bibliography
	37.7 Problems

	38. CALCULUS
	38.1 Introduction
	38.2 Derivatives
	38.3 Integrals
	38.3.1 Integration Examples

	38.4 Vectors
	38.5 Numerical Tools
	38.5.1 Approximation of Integrals and Derivatives from Sampled Data
	38.5.2 Centroids and Moments of Inertia

	38.6 Problems

	1. ANALYSIS OF DIFFERENTIAL EQUATIONS
	1.1 Introduction
	1.2 Explicit Solutions
	1.3 Responses
	1.3.1 First-order
	1.3.2 Second-order
	1.3.3 Other Responses

	1.4 Response Analysis
	1.5 Non-Linear Systems
	1.5.1 Non-Linear Differential Equations
	1.5.2 Non-Linear Equation Terms
	1.5.3 Changing Systems

	1.6 Case Study
	1.7 Summary
	1.8 Problems
	1.9 Problems Solutions
	1.10 Challenge Problems

	2. ELECTRICAL AND COMPUTER ENGINEERING REVIEW
	2.1 Introductions
	2.2 Examples
	2.3 Summary
	2.4 References/Bibliography
	2.5 Problems
	2.6 Challenge Problems

	3. MECHANICAL ENGINEERING REVIEW
	3.1 Introduction
	3.2 Examples
	3.3 Summary
	3.4 References/Bibliography
	3.5 Problems
	3.6 Challenege Problems

	4. INDUSTRIAL ENGINEERING OVERVIEW
	4.1 Introduction
	4.2 Examples
	4.3 Summary
	4.4 References/Bibliography
	4.5 Problems

	5. PRODUCT DESIGN AND MANUFACTURING REVIEW
	5.1 Introduction
	5.2 Examples
	5.3 Summary
	5.4 References/Bibliography
	5.5 Problems
	5.6 Challenege Problems

	2. BOOLEAN LOGIC DESIGN
	2.1 Introduction
	2.2 Boolean Algebra
	2.3 Logic Design
	2.3.1 Boolean Algebra Techniques

	2.4 Common Logic Forms
	2.4.1 Complex Gate Forms
	2.4.2 Multiplexers

	2.5 Simple Design Cases
	2.5.1 Basic Logic Functions
	2.5.2 Car Safety System
	2.5.3 Motor Forward/Reverse
	2.5.4 A Burglar Alarm

	2.6 Summary
	2.7 Problems
	2.8 Problem Solutions
	2.9 Challenge Problems

	3. NUMBERS AND DATA
	3.1 Introduction
	3.2 Numerical Values
	3.2.1 Binary
	3.2.1.1 - Boolean Operations
	3.2.1.2 - Binary Mathematics

	3.2.2 Other Base Number Systems
	3.2.3 BCD (Binary Coded Decimal)

	3.3 Data Characterization
	3.3.1 ASCII (American Standard Code for Information Interchange)
	3.3.2 Parity
	3.3.3 Checksums
	3.3.4 Gray Code

	3.4 Summary
	3.5 Problems
	3.6 Problems Solutions
	3.7 Challenge Problems

	4. TRANSFORMS
	4.1 Laplace Transforms
	4.1.1 Laplace Transform Tables

	4.2 z-Transforms
	4.3 Fourier Series
	4.4 Problems
	4.5 Challenge Problems

	5. GEOMETRY
	5.1 Introduction
	5.1.1 Inertia

	5.2 Problems
	5.2.1 Challenge Problems


	6. FINANCIAL
	6.1 Introduction
	6.2 Problems
	6.3 Challenge Problems

	7. OPTIMIZATION
	7.1 Introduction
	7.2 System Modeling and Variable Identification
	7.3 Cost Functions and Constraints
	7.4 Single Variable Searches
	7.4.1 Example Problem

	7.5 Multivariable Searches
	7.5.1 Algorithms
	7.5.2 Random Walk
	7.5.3 Gradient Decent
	7.5.4 Simplex

	1.6 Summary
	1.7 Problems
	1.8 Challenge Problems

	2. PROJECT SCHEDULING
	2.1 Introduction
	2.2 Gantt Charts
	2.3 Critical Path Method (CPM)
	2.4 Program Evaluation and Review Technique (PERT)
	2.5 Problems
	2.6 Challenge Problems

	3. DIRECTED GRAPHS
	3.1 Introduction
	3.2 Data Structures
	3.3 Applications
	3.3.1 Precedence Identification
	3.3.2 Graph Searching

	3.4 Other Topics
	1.5 Summary
	1.6 Problems
	1.7 Challenge Problems

	2. TREE DATA STRUCTURES
	2.1 Introduction
	2.2 Data Structures
	2.3 Applications
	2.3.1 Precedence Identification
	2.3.2 Tree Searching

	1.4 Summary
	1.5 Problems
	1.6 Challenge Problems



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /FRA <>
    /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <>
    /PTB <>
    /DAN <>
    /NLD <>
    /ESP <>
    /SUO <>
    /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /NOR <>
    /SVE <>
    /KOR <FEFFd5a5c0c1b41c0020c778c1c40020d488c9c8c7440020c5bbae300020c704d5740020ace0d574c0c1b3c4c7580020c774bbf8c9c0b97c0020c0acc6a9d558c5ec00200050004400460020bb38c11cb97c0020b9ccb4e4b824ba740020c7740020c124c815c7440020c0acc6a9d558c2edc2dcc624002e0020c7740020c124c815c7440020c0acc6a9d558c5ec0020b9ccb4e000200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b66f49ad8768456fe50cf52068fa87387ff0c4ee563d09ad8625353708d2891cf30028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f003002>
    /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b8f039ad876845f7150cf89e367905ea6ff0c4fbf65bc63d066075217537054c18cea3002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f3002>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


