
Proceedings of the 3rd International Conference on Computing and Informatics, ICOCI

2011,8-9 June, 2011 Bandung, Indonesia
Paper No.

092

 147

AGILE SOFTWARE DEVELOPMENT PRACTICES THAT

INFLUENCE SOFTWARE QUALITY: A REVIEW

1Shafinah Farvin Packeer Mohamed, 2Fauziah Baharom, 3Aziz

Deraman, 4Jamaiah Yahya

Universiti Utara Malaysia, 1shafinah@uum.edu.my, 2fauziah@uum.edu.my, 4jamaiah@uum.edu.my

Universiti Malaysia Terengganu, 3nc@umt.edu.my

ABSTRACT. Agile software development (Agile) is being practiced in

software industry nowadays as it fits the current business environment

which focuses on delivering software to market as quickly as possible. In

addition, Agile practitioners claim that it produces software with good

quality. Thus, our research aims to identify Agile practices that should be

followed in order to produce good quality software. Since many researchers

report that the quality of people and process influence the quality of

software product, this paper discusses on practices related to these two

factors. The identified practices will be used for developing questionnaire

in order to investigate current practice among Agile practitioners.

Keywords: Agile Software Development, Software Quality, Software

Practice.

INTRODUCTION

Software quality has become a major strategic issue in software industry (Jamaiah,

Fauziah, Aziz & Abdul Razak, 2005). This is because customers always expect that the

software product, service and process to be good in quality (Lycett, Macredie, Patel & Paul,

2003), which meets their needs and follows certain standards (Krishnan, 1993). Besides, they

also expect that software products can be developed faster (Verner, Liming, Babar & Ming,

2004). Generally, software with good quality has these criteria: 1) meets the expected

requirements, 2) completed within budget, 3) completed on time, 4) completed in its entirety,

5) delivered together with a solid and thoroughly tested code, and 6) can be used easily

(Nasution & Weistroffer, 2009). The quality of a software product highly depends on the

people, organization and procedures used to create and deliver it (Fuggetta, 2000). However,

according to Arthur (1993) and O’Regan (2002), there are three key elements need to be

given attention in developing good software: 1) the quality of people involved, 2) the process

performed and 3) the use of development technology. Nevertheless, Fauziah (2008) identified

another two factors that influence software quality which are the working environment, and

project condition. Besides, Hazzan and Dubinsky (2009) stated that human, technology used

and organizational aspects should be considered in assuring software quality. Based on the

literature mentioned, factors that influence software quality can be classified into five, which

are process, human, working environment, technology and project conditon.

Realizing the needs for faster software development cycle and rapidly changing

requirements, many organizations are shifting from conventional software development

approach to Agile which is considered as a light-weight approach (Conn, 2004). However

most Agile opponents argue that this software development approach is lack of

Proceedings of the 3rd International Conference on Computing and Informatics, ICOCI

2011,8-9 June, 2011 Bandung, Indonesia
Paper No.

092

 148

documentation, which leads to software maintainability problem. In addition, Turk, France

and Rumpe (2002) mentioned some limitations in Agile, such as, limited support for

distributed development environments and limited support for building reusable artifacts.

They believe these limitations able to give impact on the quality of developed software. On

the other hand, many Agile representatives claim that it fits the industrial needs (Beck, 2000)

because it promises higher quality software (Sliger, 2006), higher customer satisfaction, lower

defect rates, faster development times and becomes a solution to rapidly changing

requirements (Boehm & Turner, 2003). Consequently, this paper reviews the literature

related to practices of Agile development approach that must be performed in producing good

quality software as part of our research work. Our research aims to construct a unified

software process certification model which can be used to assess and certify software based

the quality of development process no matter what approach was used either conventional,

Agile or Web. However, discussion in this paper will focus on findings from literature about

the required practices related to human and process factors of Agile based development. The

structure of this paper is organized as follows: the next section discusses about Agile practices

that influence software quality and finally future work and conclusion is provided.

AGILE SOFTWARE DEVELOPMENT PRACTICES THAT INFLUENCE

SOFTWARE QUALITY

Agile is introduced recently as a consequence from the problems faced in conventional

methodologies (Rico, Sayani & Sone, 2009) which are not flexible in accepting unstable and

volatile requirements (Verner et al., 2004). It is aimed to produce higher quality software in a

shorter period of time (Livermore, 2007; Sliger, 2006). Currently there are many Agile

methodologies such as Extreme Programming (XP) and Scrum (Abrahamsson, Salo,

Ronkainen & Warsta, 2002). These methodologies have similar values and practices, whereby

they follow 12 principles, for instance: “Welcome changing requirements, even late in

development” and “Deliver working software frequently, from a couple of weeks to a couple

of months, with a preference to the shorter timescale” (Agile Manifesto, 2001). It also follows

four values which are: 1) iterative, 2) incremental, 3) self-organizing and 4) emergent

(Lindvall et al., 2002).

A survey conducted by Microsoft Researchers reveals the benefits of Agile as improved

communication and flexibility, with faster release. Another survey conducted by IBM and

Ambysoft shows that Agile adoption improves productivity, customer satisfaction and project

success (Rico et al., 2009). The results of these studies show that Agile leads in producing

good quality software. Therefore, there is a need to identify the Agile practices that influence

software quality. Although factors that influence software quality can be classified into five,

however as mention in previous section, this paper will only discuss two factors which are

human and process.

Human

Agile implementation highly depends on human factor (Mnkandla, 2004; Lycett et al.,

2003; Cockburn & Highsmith, 2001). Most literature highlight about team, project manager,

developer and customer when discussing about human involved in Agile. Each of them needs

to implement certain practices in sequence to ensure software quality. They are encouraged to

be placed in a single space to facilitate intensive communication, because communication is

emphasized for knowledge sharing (Pressman, 2005; Lycett et al., 2003; Highsmith &

Cockburn, 2001). Besides, face to face communication is accepted as more effective to

transfer idea compared to writing and reading documents (Highsmith & Cockburn, 2001).

Smaller size team will encourage better communication, as more team members will cause the

project to be ‘less agile’ (Abrahamsson et al., 2002). On top of that, most Agile

methodologies does not work for large development teams. Thus, the suggested average

Proceedings of the 3rd International Conference on Computing and Informatics, ICOCI

2011,8-9 June, 2011 Bandung, Indonesia
Paper No.

092

 149

number of team member is nine (Highsmith & Cockburn, 2001). The practices that must be

followed are listed thoroughly in Table 1.

Process

Software development process is important in producing good quality software, as stated

by Deming (1982) “the quality of product is influenced by the quality of process used to

develop it”. Besides the development process, project management also plays an important

role. Basically Agile has all fundamental software development phases, which are

requirement gathering, design, coding and testing. However, instead of having the four phases

one after another throughout development, Agile has these phases iteratively in shorter time

(Beck, 1999). Besides that, the implementation is also different. Requirement gathering and

design in Agile is done iteratively and incrementally rather than gathering all requirements

and designing upfront. During the development process, Agile emphasizes practices which

can promote quality and faster delivery, such as pair programming and test driven

development. These practices are further listed in Table 1.

Table 3. Agile Practices that Influence Software Quality

Factor Sub Factor Agile Practice Reference

Human

Team

High competence and expertise Tsun & Dac –Buu (2008)

Great motivation Tsun & Dac-Buu (2008)

Common focus Pressman (2005)

Communication is used as important

mechanism for knowledge sharing

Coram & Bohner (2005)

Self-organized Sliger & Broderick (2008)

Co-located Misra, Kumar & Kumar (2009)

Empowered to make decisions Sliger & Broderick (2008);

Lindval et al. (2002)

Decisions made collaboratively but speedy Highsmith & Cockburn (2001)

Able to give constant feedback Highsmith & Cockburn (2001)

Mutual trust and respect exist among team

members

Pressman (2005); Highsmith &

Cockburn (2001)

Able to deal with ambiguity Highsmith & Cockburn (2001)

Intense interaction exist among team member Highsmith & Cockburn (2001)

Average size of team is 9 people Highsmith & Cockburn (2001)

Project

Manager

Engaged with daily activities Schuh (2005)

Responsible to ensure that news (bad or good) is

spread between customer and team.

Schuh (2005)

Knowledgeable in agile process Tsun & Dac-Buu(2008)

Has adaptive management style Tsun & Dac-Buu(2008)

Responsible to the overall project’s progress Schuh (2005)

Responsible to maintain relationship with

customers

Schuh (2005)

Acts more like a facilitator than a foreman Sliger (2006); Schuh (2005)

Responsible to build team cohesion Sliger (2006)

Developer

Able to respond quickly (responsive) Cockburn & Highsmith (2001)

Able to socialize (amicable) Cockburn & Highsmith (2001)

Able to work in group and spread knowledge Cockburn & Highsmith (2001)

Must be competent Lindvall et al. (2002)

Must be willing to learn continuously and work in

changing situations

Schuh (2005)

Must be inquisitive in nature Schuh (2005)

Customer

Able to give constant feedback Lan & Ramesh, (2008);

Able to communicate with the team Rico et al. (2009)

Able to present on-site throughout the

development process(dedicated)

Paetsch et al. (2003);

Highsmith & Cockburn (2001)

Empowered to make decisions on behalf of other

stakeholders

Boehm & Turner(2003);

Paetsch et al. (2003)

Know the business domain and

Knowledgeable

Schuh (2005); Boehm & Turner

(2003)

Proceedings of the 3rd International Conference on Computing and Informatics, ICOCI

2011,8-9 June, 2011 Bandung, Indonesia
Paper No.

092

 150

Do not feel afraid to be responsible to the

decisions made

Schuh (2005)

Willing to compromise Schuh (2005)

Process

Planning

Done collaboratively with team members Ambler (2010)

Done continuously throughout the project at the

beginning of each iterations and releases

 Schuh (2005); Ambler (2005)

Done according to features/ stories Sliger & Broderick (2008);

Schuh (2005)

There exists daily stand up meetings among

developers

Sliger & Broderick (2008)

Release meeting is conducted at the

beginning of project to create release plan

Sliger (2006); Schuh (2005)

Iteration plan is created at the beginning of each

iterations

Sliger (2006); Schuh (2005)

User selects stories to be implemented in each

iteration based on the estimates and velocity

produced

Schuh (2005)

Tasks estimation must be made by the developer

who is going to accomplish the task

Wells (2009)

Requirement

Gathering

Iterative requirement engineering Wells (2009); Lan & Ramesh,

(2008)

Face-to-face communication is emphasized

instead of having written specification

Lan & Ramesh, (2008); Paetsch

et al. (2003)

High level requirements are written in user

stories(XP)/ backlog(Scrum)/features(FDD and

DSDM) for requirement gathering

Rico et al. (2009); Wells

(2009); Lan & Ramesh, (2008)

Detailed requirements are discussed in detail at

each development cycle’s start

Wells (2009); Lan & Ramesh,

(2008)

Information needed on user story: its name, the

story and developer’s estimation

Schuh (2005)

The story written should be in simple and

understandable language

Wells (2009); Schuh (2005)

Prioritization to the user stories is done by user Lan & Ramesh, (2008);

Paetsch et al. (2003)

Requirements can be reprioritized by user Lan & Ramesh, (2008); Paetsch

et al. (2003)

Requirements can be added, removed or edited by

users

Schuh (2005)

Use prototype to validate the requirements Lan & Ramesh, (2008)

Design

Software is designed in small chunks and

integrated in ongoing manner

Highsmith & Cockburn (2001)

Agile Modeling is used to model high-level

architecture of the system upfront

Ambler (2010)

Unit tests which is implemented for Test Driven

Development is used as detailed

design artifact

Ambler (2005)

Metaphor is used for determining

architecture of the system

Rico et al. (2009)

Coding

Implement collective code ownership Ambler (2010); Rico et al.

(2009); Wells (2009)

Implement coding standards Rico et al. (2009); Wells(2009)

Implement pair programming Rico et al. (2009); Wells (2009)

Implement code and database refactoring Ambler (2005)

Unit tests are developed before the code is written Ambler(2010); Wells (2009)

Group and implement requirements with highest

priority first

Leffingwell (2007)

Ensure that the code produced is tested, working

and integrated to system baseline

Wells (2009); Leffingwell

(2007)

Unit tests are developed before the code is

implemented

Leffingwell (2007); Schuh

(2005)

Customer writes the user acceptance tests

according to stories/features

Schuh (2005); Abrahamsson et

al. (2002)

Proceedings of the 3rd International Conference on Computing and Informatics, ICOCI

2011,8-9 June, 2011 Bandung, Indonesia
Paper No.

092

 151

Testing User acceptance tests are used for requirements

validation and verification

Lan & Ramesh, (2008); Paetsch

et al. (2003);

Continuous testing throughout development Leffingwell (2007)

Conduct review meetings to validate

Requirements

Lan & Ramesh, (2008); Paetsch

et al. (2003)

Pair programming promotes peer review Rico et al. (2009)

FUTURE WORK AND CONCLUSION

 Figure 10. The Conceptual Framework for Unified Software Process Certification Model

Figure 1 shows the proposed conceptual framework of our research. As mentioned earlier,

this study aims to construct a Unified Software Process Certification Model. One of the

components in the model is the standardized criteria which act as a benchmark of the model.

The standardized criteria will be constructed by identifying the best practices that must be

performed in producing high quality software product. This study will identify and consider

the best software development practices of conventional, Agile and Web-based software

development. Since quality and rapid development process are treated as important goals to

be achieved in software industry, Agile has been widely adopted by software developers.

This paper presents the identified Agile software development practices that are related to

human and process factors. Results of the literature found the practices emphasized for

human factor are team work, effective communication, decision-making skills, and ability to

work quickly. While for the process factor, the literature shows that Agile supports all

fundamental software development phases although the implementation is different (refer

Table 1). The importance of these practices will be verified by Agile practitioners through an

empirical study. Only the practices which get high consideration from them will be included

as the standardized criteria for our model. Moreover, during the empirical study, additional

practices that might be suggested by the practitioners will be taken into consideration.

REFERENCES

Abrahamsson, P., Salo, O., Ronkainen, J., & Warsta, J. (2002). Agile Software Development Methods

Review and Analysis. VTT Technical Report.

Agile Manifesto. (2001). Retrieved July, 7, 2010, from www.agilemanifesto.org

Ambler, S. (2010). Agile Project Planning Tips. Retrieved January, 7, 2011, from

http://www.ambysoft.com/essays/agileProjectPlanning.html

Ambler, S. (2005). Quality in an Agile World. Software Quality Professional, 7(4), 34-40.

Arthur, L. J. (1993). Improving Software Quality An Insider's Guide to TQM. New York: Wiley Series.

Beck, K. (2000). Extreme Programming Explained: Embrace Change. San Francisco: Addison-

Wesley.

Beck, K. (1999). Embracing Change with Extreme Programming, 70-77. doi: 10.1109/2.796139

Boehm, B., Turner, R. (2003). Observations on Balancing Discipline and Agility. Proceedings of the

Agile Development Conference, 32-39. doi: 10.1109/ADC.2003.1231450

UNIFIED SOFTWARE

PROCESS

CERTIFICATION MODEL

Standardized

Criteria

Conventional

Agile Based

Web based

Proceedings of the 3rd International Conference on Computing and Informatics, ICOCI

2011,8-9 June, 2011 Bandung, Indonesia
Paper No.

092

 152

Cockburn, A., & Highsmith, J. (2001). Agile Software Development: The People Factor. 131-133. doi:

 10.1109/2.963450

Conn, S. S. (2004). A New Teaching Paradigm In Information Systems Education: An Investigation

And Report On The Origins, Significance And Efficiacy Of The Agile Development Movement.

Information System Education Journal ,EDSIG.

Coram, M. & Bohner, S. (2005). The Impact of Agile Methods on Software Project Management. 12th

IEEE International Conference and Workshops on the Engineering of Computer-Based Systems,

363 - 370. doi: 10.1109/ECBS.2005.68

Deming, W. (1982). Out of Crisis. Cambridge, MA: MIT Center for Advanced Engineering Study .

Fauziah Baharom (2008). A Software Certification Model Based on Development Process Quality

Assessment. Unpublished doctoral dissertation, Universiti Kebangsaan Malaysia.

Fuggetta, A. (2000). Software Process: A Roadmap, Proceedings of the Conference on the Future of

Software

 Engineering, 25-34. doi: 10.1145/336512.336521

Hazzan, O., & Dubinsky, Y. (2009). Workshop on Human Aspects of Software Engineering.

Proceeding Of The 24
th

 ACM SIGPLAN Conference Companion On Object Oriented

Programming Systems Languages And Applications, 725-726. doi: 10.1145/1639950.1639984

Highsmith, J., & Cockburn, A. (2001). Agile Software Development: The Business Of Innovation. 120-

127.

Jamaiah Haji Yahya, Fauziah Baharom, Aziz Deraman & Abdul Razak Hamdan (2005). A Conceptual

Framework for Software Certification. KUTPM Journal of Technology & Management, 99-111.

Krishnan, M. (1993). Cost, Quality And User Satisfaction Of Software Products: An Empirical

Analysis . Proceedings Of The 1993 Conference Of The Center For Advanced Studies On

Collaborative Research.

Lan, C., Ramesh, B. (2008). Agile Requirements Engineering Practices: An Empirical Study. 60-67.

Leffingwell, D. (2007). Scaling Software Agility. Boston: Addison-Wisley.

Lindvall, M., Basili, V., Boehm, B., Costa, P., Dangle, K., Shull, F. (2002). Empirical Findings in

Agile Methods. Proceedings of Extreme Programming and Agile Methods , 197-207.

Livermore, J. A. (2007). Factors That Impact Implementing An Agile Software Development

Methodology. Proceedings of SoutheastCon 2007, 82-86. doi: 10.1109/SECON.2007.342860

Lycett, M.,Macredie, R.D.,Patel, C., & J.Paul, R.(2003). Migrating Methods To Standardized

Development Practice. 79-85. doi: 10.1109/MC.2003.1204379

Misra, S., Kumar, V., Kumar, U. (2009). Identifying Some Important Success Factors in Adopting

Agile Software. The Journal of Systems and Software, 1869-1890.

doi:10.1016/j.jss.2009.05.052

Mnkandla, E. (2004). Balancing the Human and the Engineering Factors in Software Development.

1207-1201. doi: 10.1109/AFRICON.2004.1406881

Nasution, M. F., & Weistroffer, H. R. (2009). Documentation in Systems Development: A Significant

Criterion for Project Success. Proceedings of the 42nd Hawaii International Conference on

System Sciences, 1-9.

O'Regan, G. (2002). A Practical Approach to Software Quality. Springer.

Paetsch, F., Eberlein, A. & Maurer, F. (2003). Requirements Engineering and Agile Software

Development. Proceedings of the IEEE International Workshops on Enabling Technologies:

Infrastructure for Collaborative Enterprises, 308 - 313. doi: 10.1109/ENABL.2003.1231428

Pressman, R. S. (2005). Software Engineering A Practitioner's Approach 6th Ed. McGraw Hill.

Rico, D., Sayani, H., Sone, S. (2009). The Business Value of Agile Software Methods. Fort Lauderdale:

J.Ross.

Schuh, P. (2005). Integrating Agile Development In The Real World. Hingham, Hingham: Charles

River Media.

Proceedings of the 3rd International Conference on Computing and Informatics, ICOCI

2011,8-9 June, 2011 Bandung, Indonesia
Paper No.

092

 153

Sliger, M., Broderick, S. (2008). The Software Project Manager's Bridge to Agility. Boston: Addison-

Wesley.

Sliger, M. (2006). A Project Manager's Survival Guide to Going Agile. Retrieved Novermber, 10,

2010, from http://www.rallydev.com/documents/rally_survival_guide.pdf

Tsun, C. Dac-Buu, C. (2008). A Survey Study Of Critical Success Factors In Agile Software Projects

The Journal of Systems and Software, 961–971. doi:10.1016/j.jss.2007.08.020

Turk, D., France, R., & Rumpe, B. (2002). Limitations of Agile Software Process. Proceedings of 3
rd

International Conference on Extreme Programming and Agile Processes in Software

Engineering (XP 2002), 43-46.

Verner, J., Liming, Z., Babar, M. A., & Ming, H. (2004). Software Quality and Agile Methods. 28
th

Annual International Computer Software and Applications Conference(COMPSAC'04), 520-

525.

Wells, D. (2009). Extreme Programming. Retrieved September 17, 2010 from

http://www.extremeprogramming.org

