

A Comparison between Agile and Traditional

Software Development Methodologies

M. A. Awad

This report is submitted as partial fulfilment
 of the requirements for the Honours Programme of the
School of Computer Science and software Engineering,

The University of Western Australia,
2005

 - i -

Abstract

Software has been part of modern society for more than 50 years. There are several
software development methodologies in use today. Some companies have their own
customized methodology for developing their software but the majority speaks about two
kinds of methodologies: heavyweight and lightweight. Heavyweight methodologies, also
considered as the traditional way to develop software, claim their support to
comprehensive planning, detailed documentation, and expansive design. The lightweight
methodologies, also known as agile modeling, have gained significant attention from the
software engineering community in the last few years. Unlike traditional methods, agile
methodologies employ short iterative cycles, and rely on tacit knowledge within a team
as opposed to documentation.

In this dissertation, I have described the characteristics of some traditional and agile
methodologies that are widely used in software development. I have also discussed the
strengths and weakness between the two opposing methodologies and provided the
challenges associated with implementing agile processes in the software industry. This
anecdotal evidence is rising regarding the effectiveness of agile methodologies in certain
environments; but there have not been much collection and analysis of empirical
evidence for agile projects. However, to support my dissertation I conducted a
questionnaire, soliciting feedback from software industry practitioners to evaluate which
methodology has a better success rate for different sizes of software development.
According to our findings agile methodologies can provide good benefits for small scaled
and medium scaled projects but for large scaled projects traditional methods seem
dominant.

Keywords: Software Process, Software Development Methodology, Agile, Heavyweight
CR Categories: D.2.1 [Requirements/Specifications] Methodologies, D.2.9
[Management] Life cycle, K.6.3 [Software Management] Software Process, K.6.3
[Software Management] Software Development

 - ii -

Acknowledgements

Firstly I would like to thank my family for their support, encouragement and love that
helped me get through University. This thesis would not have been possible without them
and I hope I have made them proud.

My supervisors, Alex Reid and Terry Woodings, for all the help I received over the
research project. Had not been for your guidance and experience I would not have been
able to continue. For without their guidance, support and assurance that everything is
going fine I would have had a stress attack. Terry Woodings, for providing a positive
outlook on my progress when I felt that there was no progress and great feedback when I
didn’t get something as he always knew generally everything about anything. Alex Reid,
for taking me as his student and giving me confidence that I could make this thesis into a
really good one. I really learnt a lot more than just about my thesis. Thanks!

My sister and cousins for their hospitality while my parents were not here. Without them
making me stay at home on weekends and not out partying I would have been way
behind in my work.

Finally, thank you to all my friends for their moral support and encouragement
throughout the last semester.

 .

 - iii -

Contents

Abstract ii

Acknowledgements iii

List of Figures vi

List of Tables vii

1.0 Introduction 1
1.1 Overview ..2

2.0 Heavyweight Methodologies 3
2.1 Waterfall ...3
2.2 Unified Process...4
2.3 Spiral Model ...6
2.4 Heavyweight Characteristics ..6

3.0 Agile Modeling 8
3.1 Extreme Programming (XP) ...8
3.2 Scrum..10
3.3 Feature Driven Development (FDD) ..11
3.4 Dynamic System Development Method ...13
3.5 Adaptive Software Development (ASD) ..14
3.6 Agile Manifesto ..16
3.7 General Features and Comparison of Agile Methodologies ...17
3.8 Characteristics of Agile Methodologies..18

4.0 Limitations of Heavyweight Methodologies 21

5.0 Limitations of Agile Methodologies 26

6.0 Implementation of Agile Methodologies 29
6.1 Implementing Agile Processes in Software Organizations ...30
6.2 Agile Methods and Offshore Development ..33

7.0 Comparison of Agile and Heavyweight 35
7.1 Project Size ...35
7.2 People Factor ..37

 - iv -

7.3 Risk Factors ..37

8.0 Questionnaire 39
8.1 Questionnaire Format ...39
8.2 Questionnaire Sample Size ...40
8.3 Questionnaire Results ...40

8.3.1 Results on Organization Characteristics and Respondents Knowledge40
8.3.2 Type of Methodology used ...41
8.3.3 Effects of Agile methods on Software Quality and Cost compared to..41
8.3.4 Agile or Heavyweight for Software development...42
8.3.5 Likes and Dislikes of Agile and Heavyweight Methods ...43

9.0 Conclusion and Future Work 46

10.0 References 48

APPENDIX A Original Honours Proposal 53

APPENDIX B Feature Driven Development Roles and Responsibilities 58

APPENDIX C Lean Manufacturing and Total Quality Management Rules 59

APPENDIX D Capability Maturity Model standards 60

APPENDIX E Software Development Methodology Questionnaire 61

APPENDIX F Questionnaire Results for All Samples 69

 - v -

List of Figures

Figure 1: Waterfall Lifecycle ... 3
Figure 2: Waterfall Deliverables .. 4
Figure 3: Unified Process Lifecycle .. 5
Figure 4: Lifecycle of the XP process .. 9
Figure 5: Scrum Process .. 11
Figure 6: Feature Driven Development processes ... 12
Figure 7: DSDM process diagram ... 13
Figure 8: ASD Lifecycle .. 15
Figure 9: Project Resolution .. 21
Figure 10: Feature and Function Usage ... 22
Figure 11: Modes of Communication .. 25
Figure 12: Cumulative Expense for Heavy and Agile Development 30
Figure 13: Problem Size and Methodology Affecting Staff .. 36
Figure 14: Effect of Project Size .. 36
Figure 15: Effect of Agile Methods on Cost... 42
Figure 16: Effect of Agile Methods on Quantity ... 42
Figure 17: Aspects of Agile Methods Most Appealed by Respondents 43
Figure 18: Dislikes of Agile Aspects .. 44
Figure 19: Dislikes of Heavyweight Aspects.. 44
Figure 20: Common Problems in Agile Methods ... 45
Figure 21: Extent of Agile Techniques... 45

 - vi -

List of Tables

Table 1: General Features of Agile Methods.. 17
Table 2: Difference in Agile and Heavyweight Methodologies 35
Table 3: Agile and Heavyweight Discriminators.. 38

 - vii -

1.0 Introduction

Software has been part of modern society for more than 50 years. Software development
started off as a messy activity often mentioned as “code and fix”. The software was
written without much of a plan, and the design of the system was determined from many
short term decisions. This worked well for small systems but as systems grew it became
more difficult to add new features and bugs were harder to fix. This style of development
was used for many years until an alternative was introduced: Methodology.
Methodologies impose a disciplined process upon software development with the aim of
making software development more predictable and more efficient.

Traditional methodologies are plan driven in which work begins with the elicitation and
documentation of a complete set of requirements, followed by architectural and high level
design development and inspection. Due to these heavy aspects, this methodology
became to be known as heavyweight. Some practitioners found this process centric view
to software development frustrating and pose difficulties when change rates are still
relatively low. As a result, several consultants have independently developed
methodologies and practices to embrace and respond to the inevitable change they were
experiencing. These methodologies and practices are based on iterative enhancements, a
technique that was introduced in 1975 and that has become known as agile
methodologies.

The name “agile” came about in 2001, when seventeen process methodologists held a
meeting to discuss future trends in software development. They noticed that their
methods had many characteristics in common so they decided to name these processes
agile, meaning it is both light and sufficient. In consequence to this meeting, the “Agile
Alliance” and its manifesto for agile software development emerged. The agile methods
claim to place more emphasis on people, interaction, working software, customer
collaboration, and change, rather than on processes, tools, contracts and plans

 Agile methodologies are gaining popularity in industry although they compromise a mix
of accepted and controversial software engineering practices. The software industry
would most likely find that specific project characteristic such as objective, scope,
requirements, resources, architecture and size will determine which methodology suits
them best. Either agile or heavyweight or maybe a hybrid of the two. In the past few
years, anecdotal evidence and success stories from practicing professionals suggests that
agile methods are effective and suitable for many situations and environments. However,
empirical studies are urgently needed for evaluating the effectiveness and the possibilities
of using agile software development methods.

In today’s increasing volatility and uncertainty, talented people want to work in an
organization in which they have more control over how they work and how they interact
with peers, customers and management. Problems are changing, people are changing and
ideas are changing. While there is still a need for plan driven style development and

 - 1 -

management in some situations the bigger growth lies in agile and flexible. This report
investigates heavyweight and agile methodologies for their suitability in software
development and review anecdotal data given from practitioners to determine which
methodology suits best.

1.1 Overview

Our goal, therefore, is to begin filling in the gap of methodologies by conducting a
detailed review of both heavyweight and agile methodologies. For heavyweight method, I
reviewed several methods such as Waterfall, Unified Process and Spiral. I further
discussed an overall view of the characteristics of heavyweight methods. Next, I followed
the same procedure for agile methodologies. I introduced some agile approaches such as
Extreme Programming, Scrum, Dynamic System Development Method, Feature Driven
Development and Adaptive Software Development underlining the characteristics of
agile methods. Furthermore, I carried out a comparison of the different agile methods in
order to highlight the similarities and differences between them. The next section
criticizes the limitations of each heavyweight and agile methods. Following this, the
challenges associated with implementation of agile processes in the software industry
according to software practitioners and anecdotal evidence. To conclude, I conducted a
questionnaire to gather feedback from software developers in Perth and analyzed which
methodology was used to develop software and as well as their views on agile and
heavyweight methodologies.

 - 2 -

2.0 Heavyweight Methodologies

Heavyweight methodologies are considered to be the traditional way of developing
software. These methodologies are based on a sequential series of steps, such as
requirements definition, solution building, testing and deployment. Heavyweight
methodologies require defining and documenting a stable set of requirements at the
beginning of a project. There are many different heavyweight methodologies but I will
limit our discussion to the three most significant methodologies: Waterfall, Spiral Model
and Unified Process.

2.1 Waterfall

During the 1960s, “code and fix” was the method employed by software developers. As
Christophe Thibuat describes, “one year of slamming code, one year of debugging”. Due
to this difficult nature of “code and fix” approach, Winston Royce in 1970 proposed the
waterfall methodology. The waterfall approach emphasizes a structured progression
between defined phases. Each phase consists on a definite set of activities and
deliverables that must be accomplished before the following phase can begin. The phases
are always named differently but the basic idea is that the first phase tries to capture What
the system will do, its system and software requirements, the second phase determines
How it will be designed. The third stage is where the developers start writing the code,
the fourth phase is the Testing of the system and the final phase is focused on
Implementation tasks such as training and heavy documentation. However, in
engineering practice, the term waterfall is used as a generic name to all sequential
software engineering methodology. Figure 1 below shows a traditional waterfall lifecycle
and Figure 2 illustrates the deliverables needed for each phase to be able to proceed to the
next.

Figure 1: Waterfall Lifecycle [1]

 - 3 -

Figure 2: Waterfall Deliverables [1]

2.2 Unified Process

All efforts, including modeling, is organized into workflows in the Unified Process (UP)
and is performed in an iterative and incremental manner. The lifecycle of the UP is
presented in Figure 3. Some of the key features of the UP are as follows [2]:

• It uses a component based architecture which creates a system that is easily
extensible, promotes software reuse and intuitively understandable. The
component commonly being used to coordinate object oriented programming
projects.

• Uses visually modeling software such as UML – which represent its code as a
diagrammatic notation to allow less technically competent individuals who may
have a better understanding of the problem to have a greater input.

• Manage requirements using use-cases and scenarios have been found to be very
effective at both capturing functional requirements and help in keeping sight of
the anticipated behaviors of the system.

• Design is iterative and incremental – this helps reduce project risk profile, allows
greater customer feedback and help developers stay focused.

• Verifying software quality is very important in a software project. UP assists in
planning quality control and assessment built into the entire process involving all
member of the team.

 - 4 -

Figure 3: Unified Process Lifecycle [2]

These key features above are guidelines to be adhered throughout a projects’ lifecycle. To
determine the length of the project, UP divides the project into four phases which are
shown above in Figure 3 and discussed below [3]:

• Inception – By the end of this process a business case should have been made;
feasibility of the project assessed; and the scope of the design should be set.

• Elaboration – In this phase a basic architecture should have been produced and a
plan of construction agreed. Furthermore, a risk analysis takes place and those
risks considered to be major should have been addressed.

• Construction – This process produces a beta-release system. A working system
should be available and sufficient enough for preliminary testing under realistic
conditions.

• Transition – The system is introduced to the stakeholders and intended users. It is
crossed when the project team and the stakeholders agree that the objectives
agreed in the inception phase have been met and the user is satisfied.

There are approximately 50 work products to be completed in UP [4].All this
documentation and this rigid approach adds a lot of complexity to UP. As well, UP
predefines roles to the project team making it less flexible.

 - 5 -

2.3 Spiral Model

Another heavyweight software development model is the spiral model, which combines
elements of both design and prototyping-in-stages, in an effort to combine advantages of
top-down and bottom-up concepts. The spiral model was defined by Barry Boehm, based
on experience with various refinements of the waterfall model as applied to large
software projects. There are four main phases of the spiral model [5]:

• Objective setting – Specific objectives for the project phase are identified
• Risk assessment and reduction – Key risks are identified, analyzed and

information is obtained to reduce these risks
• Development and Validation – An appropriate model is chosen for the next phase

of development.
• Planning – The project is reviewed and plans are drawn up for the next round of

spiral

2.4 Heavyweight Characteristics

Heavyweight methodologies have been around for a very long time. They impose a
disciplined process upon software development with the aim of making software
development more predictable and more efficient. They have not been noted to be very
successful and are even less noted for being popular. Fowler criticizes that these
methodologies are bureaucratic, that there is so much to follow the methodology that the
whole pace of development slows down [6]. The heavyweight methodologies have these
similar characteristics.

Predictive approach – Heavyweight methodologies have a tendency to first plan out a
large part of the software process in great detail for a long span of time. This approach
follows an engineering discipline where the development is predictive and repeatable. A
lot of emphasis is put on the drawings focusing on the need of the system and how to
resolve those needs efficiently. The drawings are then handed over to another group who
are responsible for building the system. It is predicted that the building process will
follow the drawings. The drawings specify how they need to build the system; it acts as
the foundation to the construction process. As well, the plan predicts the task delegation
for the construction team and reasonably predicts the schedule and budget for
construction.

Comprehensive Documentation – Traditional software development view the
requirements document as the key piece of documentation. A main process in
heavyweight methodologies is the big design upfront (BDUF) process, in which a belief
that it is possible to gather all of a customer’s requirements, upfront, prior to writing any
code. Again this approach is a success in engineering disciplines which makes it
attractive to the software industry. To gather all the requirements, get a sign off from the
customer and then order the procedures (more documentation) to limit and control all

 - 6 -

changes does give the project a limit of predictability. Predictability is very important in
software projects that are life critical.

Process Oriented - The goal of heavyweight methodologies is to define a process that
will work well for whoever happens to be using it [6]. The process would consist of
certain tasks that must be performed by the managers, designers, coders, testers etc. For
each of these tasks there is a well defined procedure.

Tool Oriented – Project management tools, Code editors, compilers, etc. must be in use
for completion and delivery of each task.

 - 7 -

3.0 Agile Modeling

Agile – devoting “the quality of being agile; readiness for motion; nimbleness, activity,
dexterity in motion” as mentioned in the Oxford Dictionary [7] – software development
methods are attempting to offer once again an answer to the eager business community
asking for lighter weight along with faster and nimbler software development processes.
To name a few of those developed: Adaptive Software Development (ASD), Agile
Modeling, Crystal Methods, Dynamic System Development, Lean Development and
Scrum. All these methodologies acknowledged that high quality software and more
importantly customer satisfaction could only be achieved by bringing “lightness” to their
processes. Some of the most used agile methodologies are listed below.

3.1 Extreme Programming (XP)

Extreme programming (XP) has evolved from the problems caused by the long
development cycles of traditional development models [8]. The XP process can be
characterized by short development cycles, incremental planning, continuous feedback,
reliance on communication, and evolutionary design [9]. With all the above qualities, XP
programmers respond to changing environment with much more courage. Further
according to Williams [10], XP team members spend few minutes on programming, few
minutes on project management, few minutes on design, few minutes on feedback, and
few minutes on team building many times each day. The term ‘extreme’ comes from
taking these commonsense principles and practices to extreme levels. A summary of XP
terms and practices is shown below [8]:

• Planning – The programmer estimates the effort needed for implementation of
customer stories and the customer decides the scope and timing of releases based
on estimates.

• Small/short releases – An application is developed in a series of small, frequently
updated versions. New versions are released anywhere from daily to monthly.

• Metaphor – The system is defined by a set of metaphors between the customer
and the programmers which describes how the system works.

• Simple Design – The emphasis is on designing the simplest possible solution that
is implemented and unnecessary complexity and extra code are removed
immediately.

• Refactoring – It involves restructuring the system by removing duplication,
improving communication, simplifying and adding flexibility but without
changing the functionality of the program

• Pair programming – All production code are written by two programmers on one
computer.

• Collective ownership – No single person owns or is responsible for individual
code segments rather anyone can change any part of the code at any time.

 - 8 -

• Continuous Integration – A new piece of code is integrated with the current
system as soon as it is ready. When integrating, the system is built again and all
tests must pass for the changes to be accepted.

• 40-hour week – No one can work two overtime weeks in a row. A maximum of
40-hour working week otherwise it is treated as a problem.

• On-site customer – Customer must be available at all times with the development
team.

• Coding Standards – Coding rules exist and are followed by the programmers so as
to bring consistence and improve communication among the development team.

The lifecycle of an XP project, shown in Figure 4 [9], is divided into six phases:
Exploration, Planning, Iterations to release, Production, Maintenance and Death.
In the Exploration phase, the customer writes out the story cards they wish to be included
in their program. This leads to Planning phase where a priority order is set to each user
story and a schedule of the first release is developed. Next in the Iterations to Release
phase, the development team first iteration is to create a system with the architecture of
the whole system then continuously integrating and testing their code. Extra testing and
checking of the performance of the system before the system can be released to the
customer is done in the Production phase. Postponed ideas and suggestions found at this
phase are documented for later implementation in the updated releases made at the
Maintenance phase. Finally the Death Phase is near when the customer have no more
stories to be implemented and all the necessary documentation of the system is written as
no more changes to the architecture, design or code is made.

Figure 4: Lifecycle of the XP process [9]

 - 9 -

3.2 Scrum

Scrum is an iterative, incremental process for developing any product or managing any
work. Scrum concentrates on how the team members should function in order to produce
the system flexibility in a constantly changing environment. At the end of every iteration
it produces a potential set of functionality. The term ‘scrum’ originated from a strategy in
the game of rugby where it denotes “getting an out-of-play ball back into the game” with
teamwork [13].

Scrum does not require or provide any specific software development methods/practices
to be used. Instead, it requires certain management practices and tools in different phases
of Scrum to avoid the chaos by unpredictability and complexity [12]

Key Scrum practices are discussed below [13] and the Scrum process is shown in Figure
5.

• Product Backlog - This is the prioritized list of all features and changes that have
yet to be made to the system desired by multiple actors, such as customers,
marketing and sales and project team. The Product Owner is responsible for
maintaining the Product Backlog.

• Sprints - Sprints are 30-days in length, it is the procedure of adapting to the

changing environmental variables (requirements, time, resources, knowledge,
technology etc) and must result in a potentially shippable increment of software.
The working tools of the team are Sprint Planning Meetings, Sprint Backlog and
Daily Scrum meetings.

• Sprint Planning meeting – Sprint planning meeting is first attended by the

customers, users, management, Product owner and Scrum Team where a set of
goals and functionality are decided on. Next the Scrum Master and the Scrum
Team focus on how the product is implemented during the Sprint.

• Sprint Backlog – It is the list of features that is currently assigned to a particular

Sprint. When all the features are completed a new iteration of the system is
delivered.

• Daily Scrum – It is a daily meeting for approximately 15 minutes, which are

organized to keep track of the progress of the Scrum Team and address any
obstacles faced by the team.

 - 10 -

Figure 5: Scrum Process [14]

The Scrum process may change the job description and customs of the Scrum project
team considerably. For example, the project manager, i.e. the Scrum Master, does no
longer need to organize the team but the team organizes itself and makes decisions on
what to do. Ken Schwaber illustrates, “Most management is used to directing the project,
telling the team what to do and then ensuring they do it. Scrum relies on self-
organization, with the team deciding what to do while management runs interference and
removes roadblocks” [11]. Scrum has been successfully used over thousands of projects
in 50 organizations producing significant productivity improvement [14]. Rising and
Janof [12] suggest that “Clearly, Scrum is not an approach for large, complex team
structures, but we found that even small, isolated teams on a large project could make use
of some elements of Scrum. This is true process diversity”. Recently, efforts have been
made to combine XP practices with Scrum project management framework to form an
integrated package for software development team [11].However more study is needed to
support this package.

3.3 Feature Driven Development (FDD)

Feature Driven Development (FDD) was used for the first time in the development of a
large and complex banking application project in the late 90’s [15].Unlike the other
methodologies, the FDD approach does not cover the entire software development
process but rather focuses on the design and building phases [15].

 - 11 -

The first three phases are done at the beginning of the project. The last two phases are the
iterative part of the process which supports the agile development with quick adaptations
to late changes in requirements and business needs. The FDD approach includes frequent
and tangible deliverables, along with accurate monitoring of the progress of the report
[16].
FDD consists of five sequential steps (Figure 6), an explanation of the different roles and
responsibilities used in FDD are explained in Appendix B:

Figure 6: Feature Driven Development processes [15]

• Develop an Overall Model - A high level walkthrough of the system scope and its

context is performed by the domain expert to the team members and chief
architect. Documented requirements such as use cases or functional specifications
are developed.

• Build a Features List - A categorized list of features to support the requirements is
produced

• Plan by Feature - The development team orders the feature sets according to their
priority and dependencies and assigned to chief programmers. Furthermore, the
classes identified in the first phase are assigned to class owners (individual
developers). Also schedule and milestones are set for the feature sets.

• Design by Feature & Build by Feature - Features are selected from the feature set
and feature teams needed to develop these features are chosen by the class
owners. The design by feature and build by feature are iterative procedures during
which the team produces the sequence diagrams for the assigned features. These
diagrams are passed on to the developers who implement the items necessary to
support the design for a particular feature. There can be multiple feature teams
concurrently designing and building their own set of features. The code developed
is then unit tested and inspected. After a successful iteration, the completed
features are promoted to the main build.

 - 12 -

3.4 Dynamic System Development Method

The DSDM, Dynamic System Development Method, was developed in the United
Kingdom in the mid-1990. It is a blend of, and extension to, rapid application
development and Iterative development practices [18]. Martin Fowler, one of the writers
of Agile Manifesto, believes, “DSDM is notable for having much of the infrastructure of
more mature traditional methodologies, while following the principles of the agile
methods approach” [6]. The fundamental idea behind DSDM is to fix time and resources,
and then adjust the amount of functionality accordingly rather than fixing the amount of
functionality in a product, and then adjusting time and resources to reach that
functionality[17]. DSDM consists of five phases (Figure 7):

Figure 7: DSDM process diagram [17]

• Feasibility Study – In this phase a decision is made whether to use DSDM or not.

This is determined by judging the type of project and, organizational and people
issues. In addition, two work products are produced; a feasibility report and an
outline plan for development.

• Business Study – The recommended approach to this phase is to organize a
workshop to help understand the business domain of the project. The key outputs
of this section are System architecture definition and an Outline prototype plan.

• Functional Model Iteration – First iterative phase. This phase involves analysis,
coding and prototypes. The results gained from these prototypes are used in

 - 13 -

improving the analysis models. The key output is a functional model which
consists of the prototype code and analysis models.

• Design and Build Iteration – The system is mainly built in this phase. The design
and functional prototypes are reviewed by the users and further development is
based on the users’ comments.

• Implementation – In this final phase the system is handed over to the users.
Training is provided. User Manuals and a Project Review Report. However, the
DSDM iterative and incremental nature means that maintenance can be viewed as
continuing development. Instead of finishing the project in one cycle, the project
can return to any of the phases, Design and Build phase, Functional Model
Iteration, or even Feasibility phase so that previous steps can be refined.

There are nine practices that define the ideology and the basis for all activity in DSDM.
Some of the underlying principles include active user interaction, frequent deliveries,
empowered teams, and testing throughout the cycle. There is an emphasis on high quality
and adaptivity towards changing requirements. Like other agile methods, DSDM
approaches iterations as short time-boxed cycles of between two and six weeks.

3.5 Adaptive Software Development (ASD)

Adaptive Software Development (ASD), developed by James A. Highsmith, offers an
agile and adaptive approach to high-speed and high-change software projects [19]. It is
not possible to plan successfully in a fast moving and unpredictable business
environment. In ASD, the static plan-design life cycle is replaced by a dynamic
speculate-collaborate-learn life cycle.

ASD focal point is on three non-linear and overlapping phases (Figure 8) [18]:

• Speculate - To define the project mission, make clear the realization about
what is unclear.

• Collaborate – Highlights the importance of teamwork for developing high-
change systems

• Learn – This phase stresses the need to admit and react to mistakes, and that
requirements may well change during development.

 - 14 -

Figure 8: ASD Lifecycle [18]

Since outcomes are naturally unpredictable, Highsmith views planning as a paradox in an
adaptive environment. Normally in traditional planning when things do not go to plan it is
seen as a mistake that should be corrected. However in an adaptive environment
deviations guide us towards the correct solution.

ASD focuses more on results and their quality than the tasks or the process used for
producing the results. In an unpredictable environment you need people to collaborate in
a certain manner to deal with the uncertainty. Management is more about encouraging
communication rather than telling people what to do, so that more creative answers are
delivered.

In traditional predictive environments, designs are followed the same way they were laid
out, therefore learning is discouraged. Highsmith points out, “In an adaptive environment,
learning challenges all stakeholders - developers and their customers - to examine their
assumptions and to use the results of each development cycle to adapt the next” [18]. As
such learning is a continuous and important feature, one that assumes that plans and
designs must change as development proceeds [18].

ASD does not have detailed principles like XP, but rather it provides a framework on
how to encourage collaboration and learning within the project. ASD is not presented as a
methodology for doing software projects but rather it is an approach or an attitude that
must be adopted by an organization when applying agile processes [18].

 - 15 -

3.6 Agile Manifesto

In February 2001, seventeen representatives from the different agile methods decided to
form an Agile Alliance to better promote their views and what emerged was the Agile
‘Software Development’ Manifesto. Most of the agile techniques have been used by
developers before the alliance but it is not till after the alliance that these techniques were
grouped together into a workable framework [20].

The focal values honored by the agilists are presented in the following:

We are uncovering better ways of developing
software by doing it and helping others do it.
Through this work we have come to value:

Individuals and interactions over processes and tools
Working software over comprehensive documentation

Customer collaboration over contract negotiation
Responding to change over following a plan

That is, while there is value in the items on

the right, we value the items on the left more.

The 12 principles of the Agile Software development made by the Agile Manifesto [20]:

• Our highest priority is to satisfy the customer through early and continuous
delivery of valuable software.

• Welcome changing requirements, even late in development. Agile processes
harness change for the customer's competitive advantage.

• Deliver working software frequently, from a couple of weeks to a couple of
months, with a preference to the shorter timescale.

• Business people and developers must work together daily throughout the project.
• Build projects around motivated individuals. Give them the environment and

support they need, and trust them to get the job done.
• The most efficient and effective method of conveying information to and within a

development team is face-to-face conversation.
• Working software is the primary measure of progress.
• Agile processes promote sustainable development. The sponsors, developers, and

users should be able to maintain a constant pace indefinitely.
• Continuous attention to technical excellence and good design enhances agility.
• Simplicity--the art of maximizing the amount of work not done--is essential.
• The best architectures, requirements, and designs emerge from self-organizing

teams.
• At regular intervals, the team reflects on how to become more effective, then tunes

and adjusts its behavior accordingly

 - 16 -

3.7 General Features and Comparison of Agile
Methodologies

Comparison often implies valuing one method over the other. In this section Table 1
below discusses each method using three selected aspects: key points, special features
and identified weakness. Key points detail the methods, principles, aspects or solution.
Special feature describes one or several aspects of the methods that differentiate them
from others. Finally, identified weakness relate to some aspects of a method that have
been documented in literature.

Method
Name

Key Points Special features Identified weakness

ASD Adaptive culture,
collaboration,
mission-driven
component based
iterative
development

Organizations are
seen as adaptive
systems. Creating an
emergent order out
of a web of
interconnected
individuals

ASD is more about
concepts and culture
than the software
practice

DSDM Application of
controls to RAD,
use of
timeboxing and
empowered
DSDM teams.

First truly agile
software
development
method, use of
prototyping, several
user roles :
“ambassador”,
“visionary” and
“advisor”

While the method is
available, only
consortium members
have access to white
papers dealing with
the actual use of the
method

XP Customer driven
development,
small teams,
daily builds

Refactoring - the
ongoing redesign of
the system to
improve its
performance and
responsiveness too
change

While individual
practices are suitable
for many situations,
overall view &
management
practices are given
less attention

SCRUM Independent,
small, self-
organizing
development
teams, 30-day
release cycles.

Enforce a paradigm
shift from the
“defined and
repeatable” to the
“new product
development view of
Scrum”

While Scrum details
in specific how to
manage the 30-day
release cycle, the
integration and
acceptance tests are
not detailed

FDD Five-step
process, object-
oriented
component (i.e.
feature) based
development.

Method simplicity,
design and
implement the
system by features,
object modeling

FDD focuses only on
design and
implementation.
Needs other
supporting
approaches.

Table 1: General Features of Agile Methods [Table modified from 6, 20]

 - 17 -

In the software development viewpoint, ASD is the most abstract method [6]. Its key goal
“creating an emergent order out of a web” may be appealing but practitioners may
experience difficulties in translating the methods new concept to their use. XP represents
practice-oriented viewpoints. It contains a number of empirically validated practices
found useful by developers. DSDM is differentiated from the other methods because of
its use of prototyping. Also DSDM makes use of user roles such as ambassador,
visionary and advisor that other methods do not use. The drawback on using DSDM is
that the need to belong to the DSDM consortium in order to gain an access to the white
papers discussing different aspects of the method. FDD focuses into a simple five-step
approach which consists of identifying, designing and implementing features. FDD
assumes that some work has already been done to the project. Finally Scrum is a project
management approach that relies on self-organizing independent teams implementing a
software project in 30-day cycles called sprints.

One of the main decisive issues in the different agile methods is the size of the
development team. XP and Scrum focuses on small teams, preferably less than 10
developers. FDD, ASD and DSDM claim to be capable of up to 100 developers.
However, when the development team size gets larger, the amount of documentation is
likely to increase, thus making the project “less agile” [21]. When the development group
exceeds 20 developers, agilists’ put a great deal into solving communication problems.
As Alistair Cockburn states, “Good people are key to success with big teams” [22].

3.8 Characteristics of Agile Methodologies

According to Highsmith and Cockburn [24] , “what is new about agile methods is not the
practices they use, but their recognition of people as the primary drivers of project
success, coupled with an intense focus on effectiveness and maneuverability. This yields
a new combination of values and principles that define an agile world view.” Highsmith
further transcribes from the book Agile Competitors and Virtual Organizations the
definition of agility: “Agility... is a comprehensive response to the business challenges of
profiting from rapidly changing, continually fragmenting, global markets for high-
quality, high-performance, customer-configured goods and services.”

The following principles of agile methodologies are seen as the main differences between
agile and heavyweight:

People Oriented- Agile methodologies consider people – customers, developers,
stakeholders, and end users – as the most important factor of software methodologies. As
Jim Highsmith and Alistair Cockburn state, “The most important implication to managers
working in the agile manner is that it places more emphasis on people factors in the
project: amicability, talent, skill, and communication” [25]. If the people on the project
are good enough, they can use almost any process and accomplish their assignment. If
they are not good enough, no process will repair their inadequacy [24]. As Highsmith
highlights, “… people trump process… ” [25].

 - 18 -

Adaptive – The participants in an agile process are not afraid of change. Agilists
welcome changes at all stages of the project. They view changes to the requirements as
good things, because they mean that the team has learned more about what it will take to
satisfy the market [6]. Today the challenge is not stopping change but rather determining
how to better handle changes that occur throughout a project. “External Environment
changes cause critical variations. Because we cannot eliminate these changes, driving
down the cost of responding to them is the only viable strategy” [24].

Conformance to Actual – Agile methodologies value conformance to the actual results
as opposed to conformance to the detailed plan. Highsmith states, “Agile projects are not
controlled by conformance to plan but by conformance to the business value” [26]. Each
iteration or development cycle adds business value to the ongoing product. For agilists,
the decision on whether business value has been added or not is not given by the
developers but instead by end users and customers.

Balancing Flexibility and Planning – Plans are important, but the problem is that
software projects can not be accurately predicted far into the future, because there are so
many variables to take into account. A better planning strategy is to make detailed plans
for the next few weeks, very rough plans for the next few months, and extremely crude
plans beyond that [19]. In this view one of the main sources of complexity is the
irreversibility of decisions. If you can easily change your decisions, this means it’s less
important to get them right – which makes your life much simpler. The consequence for
agile design is that designers need to think about how they can avoid irreversibility in
their decisions. Rather than trying to get the right decision now, look for a way to either
put off the decision until later or make the decision in such a way that you will be able to
reverse it later on without too much difficulty [27].

Empirical Process – Agile methods develop software as an empirical (or nonlinear)
process. In engineering, processes are either defined or empirical. In other words, defined
process is one that can be started and allowed to run to completion producing the same
results every time. In software development it can not be considered a defined process
because too much change occurs during the time that the team is developing the product.
Laurie Williams states, “It is highly unlikely that any set of predefined steps will lead to a
desirable, predictable outcome because requirements change technology changes, people
are added and taken off the team, and so on” [28].

Decentralized Approach – Integrating a decentralized management style can severely
impact a software project because it could save a lot of time than an autocratic
management process. Agile software development spreads out the decision making to the
developers. This does not mean that the developers take on the role of management.
Management is still needed to remove roadblocks standing in the way of progress.
However management recognizes the expertise of the technical team to make technical
decisions without their permission.

 - 19 -

Simplicity – Agile teams always take the simplest path that is consistent with their goals.
Fowler states, “They (agile teams) don’t anticipate tomorrow’s problems and try to
defend against them today” [6]. The reason for simplicity is so that it will be easy to
change the design if needed on a later date. Never produce more than what is necessary
and never produce documents attempting to predict the future as documents will become
outdated. “The larger the amount of documentation becomes, the more effort is needed to
find the required information, and the more effort is needed to keep the information up to
date” [23].

Collaboration – Agile methods involve customer feedback on a regular and frequent
basis. The customer of the software works closely with the development team, providing
frequent feedback on their efforts. As well, constant collaboration between agile team
members is essential. Due to the decentralized approach of the agile methods,
collaboration encourages discussion. As Martin Fowler describes, “Agile teams cannot
exist with occasional communication. They need continuous access to business expertise”
[6].

Small Self-organizing teams – An agile team is a self organizing team. Responsibilities
are communicated to the team as a whole, and the team determines the best way to fulfill
them. Agile teams discuss and communicate together on all aspects of the project. That is
why agility works well in small teams. As Alistair Cockburn and Jim Highsmith
highlight, “Agile development is more difficult with larger teams. The average project
has only nine people, within the reach of most basic agile processes. Nevertheless, it is
interesting to occasionally find successful agile projects with 120 or even 250 people”
[25].

 - 20 -

4.0 Limitations of Heavyweight Methodologies

The main difference between heavyweight and agile methodologies is the acceptance of
change. It is the ability to respond to change that often determines the success or failure
of a software project [28]. Heavyweight methods freeze product functionality and
disallow change. However one of the key, philosophical constructs making agile
processes successful in today’s market is its response to change at any stage of the
project. It makes it very difficult to implement a predictive process or to provide a set of
stable requirements in this volatile and constantly changing environment. Michael Dell
contributes to this by stating, “..the only constant is change” [22]. Martin Fowler and Jim
Highsmith founders of the agile manifesto mention that, “Facilitating change is more
effective than attempting to prevent it. Learn to trust in your ability to respond to
unpredictable events; it’s more important than trusting in your ability to plan for
disaster,” [30]. Furthermore, Boehm [30] and Jones [32] both concluded that during their
project development experience, requirements change at 25% or more.

A research study was conducted by a Standish Group of 365 respondents and regarding
8,380 projects representing companies across major industry segments. From their
findings, 16.2% of the projects were completed on-time and on-budget with all features
and functions specified. However 52.7% of the projects are completed but over-budget,
over the time estimate and offering less features and functions while 31.1% of projects
were canceled at some point during the development cycle [31] (see Figure 9). The study
further reveals that the three major reasons that a project will succeed are user
involvement, executive management support, and a clear statement of requirements.

Project Resolution

16%

31%
53%

Project Success

Project Failed

Project Challenged

Figure 9: Project Resolution [31]

Another limitation of heavyweight methodologies is the handling of complexity.
“Complex rules and regulation give rise to simple stupid behavior,” says the former CEO
of Visa International [6]. The approach to plan everything and then to follow the plan
works smoothly for stable and less complex environment but for larger and more
complex environments, this technique would fall apart.

 - 21 -

The solution to this problem lies in simplicity. As Dee Hock rephrases his statement to,
“Simple, clear purpose and principles give rise to complex, intelligent behavior,” [20].
Some companies are using simple rules to survive complex and turbulent markets. For
example, Jack Welch CEO of General Electric (GE) transformed his company from a
market value of US$12 billion to one of the world’s most valuable companies with a
value of nearly US$500 billion. His strategy for success according to Stanford University
professor, Kathleen Eisenhardt, was based on 2 simple rules [33]. First, Welch developed
a simple method for analyzing his company’s strengths and weaknesses. He then sold or
eliminated businesses that were not promising enough to earn a No. 1 or No. 2 spot in
each industry. Next rule, Welch administered the reduction of unnecessary tasks and
introduced a process called Work-Out, during which employees of all levels would meet
to focus on a problem or an opportunity. If any valuable ideas were introduced during this
meeting then regardless of its source they would act on it rapidly [33]. Agilists promote
the same idea. As Fowler and Highsmith mention “In an agile project, it’s particularly
important to use simple approaches, because they are easier to change. It’s easier to add
something to a process that’s too simple than it is to take something away from a process
that’s too complicated,” [20].

Another finding by the Standish group shows that 45% of the features present in an
application are never used (see Figure 10). This is another reason for making the design
and code as simple as possible as this explains how nearly half of the software production
and added complexity were all not needed.

Feature and Function Usage

45%

7%13%

16%

19%

Never

Alw ays

Often

Sometimes

Rarely

Figure 10: Feature and Function Usage [31]

As mentioned earlier, Kathleed Eisenhardt suggests that instead of following complex
processes, using simple rules to communicate strategy is the best way to empower people
to seize fleeting opportunities in rapidly changing markets. With simple rules, work
teams were able to continuously improve the processes and products without detailed
guidance or complex processes [34]. Lean Manufacturing and Total Quality Management
(TQM) have a set of rules that have been tested and proven over the last two decades to
be useful to software development [35]. Lean Software Development is not a

 - 22 -

management or development methodology per se, but it offers principles that are
applicable in any environment to improve software development.

The application of the rules may have changed slightly from different industries but the
underlying principles are still the same. Mary Poppendieck shows how agile
methodologies follow the same set of rules as the Lean manufacturing and TQM unlike
heavyweight methodologies. She goes on to explain how the basic principles of Lean
Manufacturing and TQM are tantamount to the basic principles of Agile Methodologies.
Explanations of some of the rules and their similarities to agile are explained below, for a
list of all the rules of Lean Manufacturing and TQM please refer to Appendix C.

The first rule of Lean Manufacturing and TQM is elimination of waste. That is, eliminate
anything which does not add value to the final product. Documents, diagrams and models
produced as part of the software development must be minimized because once a working
system is delivered the user may care little about these deliverables. Agile methodologies
follow the same rule for their processes.

The second rule of Lean Manufacturing and TQM is that inventory is waste. Inventory
consumes resources, slows down response time and becomes obsolete. The inventory of
software development is documentation, excess documentation creates a waste of time in
producing and reviewing the documents. Rather than having a 100 page detailed
specification, write a 10 page set of rules and guidelines. This is what agile
methodologies rigorously maintain, documentation should be kept to minimal.

The third rule of Lean Manufacturing and TQM is to maximize flow. Rather than taking
months to show the customer the final product, use an Iterative development where small
but complete portions of a system are designed and delivered throughout the development
cycle. Similar to agile methods this technique allows the customer to have a better idea of
how the software works.

The fourth rule of Lean Manufacturing and TQM is pull from demand and deciding as
late as possible. Software development practices which keep requirements flexible and as
close to system delivery as possible can provide a significant competitive advantage in a
changing environment. Similarly, agile methodologies are designed to respond to change,
not predict it, and have the ability to make decisions as late as possible.

The fifth rule of Lean Manufacturing and TQM is to empower workers, to provide both
the tools and the authority for people other than mangers to make decisions. This is one
of the problems with heavyweight documentation is that it attempts to make all of the
decisions for developers. However agile methodologies give developers guidance as well
as freedom to make the detailed design and programming decisions. Mary mentions, “It is
always better to tell developers what needs to be done, not how to do it” [35].

Sequential versus Iterative development is another reason traditionalist and agilists are
very different. Heavyweight methodologies put customer feedback and testing at the last
stage of their project lifecycle. Agilists believe otherwise, that they should be embedded

 - 23 -

as a daily exercise. The key to Iterative development according to Fowler is to frequently
produce working versions of the final system that have a subset of the required features.
These working system are short on functionality but should be faithful to the demands of
the final system [6]. Heavyweight methodologies produce documents to show the users
the requirements of the software. This sort of method could hide all sorts of flows.
Agilists believe that there is nothing like a tested, integrated system for bringing a
forceful dose of reality into any project. “When people actually sit in front of a system
and work with it, then flaws become truly apparent: both in terms of bugs and in terms of
misunderstood requirements” [6].

The Standish Group International found in their study of 23,000 projects that the delivery
of software components early and often with short time frames, increase the success rate.
“Growing (instead of “developing”) software engages the user earlier and confers
ownership” [31]. Another study by Alan MacCormack, a Harvard Business School
Professor, on the development of software process on 30 projects showed that an early
release of the evolving product design to the customer is one of the factors to a successful
project. MacCormack states, “The most striking result to emerge from the research
conducted concerned the importance of getting a low-functionality version of the product
into the customers’ hands at the earliest opportunity,” [36]. Both studies by MacCormack
and Standish group heavily prove that the foundation processes of agility; short iterative
development, continuous rapid feedback and testing, and incremental development
dramatically improve the quality of the software.

Another important criticism against heavyweight methodologies is their treatment of
people involved in developing a process. Traditional methodologies treat people as
predictable components similar to what they treat their processes. In Alistair Cockburn
paper, Agile Software Development: The People Factor, he concludes from his studies of
software projects that people are the most important factor in software development [25].
Alistair Cockburn is the most explicit in his people-centric view of software
development, but the problem is that methodology has been opposed to the notion of
people as the first-order in project success [6]. However this creates a strong feedback
effect that if you treat all the developers as plug compatible programming units and not as
individuals this lowers the morale and creativity of the developers. As well the Standish
Group outlines in their report a recipe for success from their research. The first three most
important factors for a successful project are executive support, user-involvement, and
experienced project management [17].

Agile methodologies focus on the talents and skills of individuals and molds processes to
specific people and teams, not like heavyweight methods where all tasks and roles are
assigned to individuals and it is expected that the individuals will perform their tasks
accordingly. To strengthen this argument Marcus Buckingham and Curt Coffman
interviewed 80,000 managers in 400 companies over a 25 year period for a research
program by the Gallup organization. In their book, they mention that it is not the
organizations that employ traditional processes value people less than agile ones, it is that
they view people and how to improve their performance differently. They state,
“Rigorous processes are designed to standardize people to the organization, while agile

 - 24 -

processes are designed to capitalize on each individual and each team’s unique
strengths,”[37].

It is a big belief among agile process proponents that people can respond quicker and
transfer ideas more rapidly when talking face-to-face than they can in heavyweight
methodologies when reading or writing documentation. When developers talk with
customers and sponsors, they could work out difficulties, adjust priorities, and examine
alternate paths forward in ways not possible when they are not working together.
According to Cockburn the most significant single factor is “communication”. He
illustrates in the figure below that the communication effectiveness drops as modalities
and timing are removed [38]. Hewlett-Packard and IBM were early to observe the
effectiveness of informal meeting places, but now its part of the industry to have an
effective design environment actively encourage and permit ad hoc meetings of small
groups [38].

Figure 11: Modes of Communication [53]

Another argument between agile and heavyweight methodologies is the measurement of
project success. A predictive heavyweight project considers handing a project that is on-
time and on-cost to be a success [17].However agilists measures project success by
questioning if the customer got software that is more valuable to them than the cost put
into it. According to Martin Fowler, “A good predictive project will go according to plan,
a good agile project will build something different and better than the original plan
foresaw” [6].

 - 25 -

5.0 Limitations of Agile Methodologies

What are the risks and shortcomings of the agile methods? Techniques of agile methods
have been around since 30 years ago. Larry Constantine states, “IBM touted so-called
Chief programmer teams small, agile groups headed by a strong technical leader who
could hold the implicit architecture in mind without resorting to much explicit design”
[39]. The objective of IBM was to be able to have working code at all times and
gradually grow it to become a working system, this is similar to the objective of agile
methodologies. However this chief programmer technique enjoyed early victories for a
while but later faded away. The reason for this as Constantine mentions, “not every
problem can be sliced and diced into the right pieces for speedy incremental refinement.”
[39]. So would agile methodology work this time?

The biggest limitation of agile methodologies is how they handle larger teams. Cockburn
and Highsmith both conclude that “Agile development is more difficult for larger
teams…as size grows coordinating interfaces become a dominant issue,” [25]. Both
Larry Constantine and Martin Fowler also believe that agile with face-to-face
communication breaks down and becomes more difficult and complex with developers
more than 20 [39,6]. In contrast, heavyweight and plan-driven methods scale better to
large projects.

Barry Boehm disagrees to a degree with the first principle of agile manifesto which
states, “Our highest priority is to satisfy the customer through early and continuous
delivery of valuable software” [20]. He states that, “Overfocus on early results in large
systems can lead to a major rework when the architecture doesn’t scale up” [37]. Boehm
also contends that a plan-driven process is most needed for high assurance software. Even
the originator of agile modeling Scott Ambler mentions, “I would be leery of applying
agile modeling to life-critical systems” [41]. Heavyweight traditional goals such as
predictability, repeatability, and optimization are often characteristics of reliable safety
critical software development. Most agile techniques do not support traditional
walkthroughs and code inspections during the life-cycle, it emphasizes on pair
programming and informal reviews as their quality control mechanism. This kind of
technique has not yet been proved adequate enough for strict regulations of critical
software. Alistair Cockburn questioned this by stating, “How agile can we be, given that
this is going to be critical, reliable and safe?” [21]. Moreover, Martin Fowler mentions
that agile methods provide workable solutions only for “business software” [6].

Alistair Cockburn and Jim Highsmith emphasize severe critical people factors, such as
amicability, talent, skill, and communication are the most important factors to a success
of a project [25]. Boehm contends noting that, “A significant consideration here is the
unavoidable statistic that 49.9999 percent of the world’s software developers are below
average,” [40]. As well Larry Constantine’s contributes to this problem for agile methods
by stating, “There are only so many Kent Becks in the world to lead the team. All of the
agile methods put a premium on having premium people,” [42]. While agile does not

 - 26 -

require uniformly high-capability people, it relies on tacit knowledge embodied by the
team, rather than writing the knowledge down as documentation. Boehm points out that
there is a risk that this may lead to architectural mistakes that cannot be easily detected by
external reviewers due to the lack of documentation. However plan-driven or
heavyweight methods reduce this risk by investing in life-cycle architectures and plans
and using theses to facilitate external expert reviews even though these plans may be
obsolete or expensive to change if a change occurs [42].

This debate about whether or not agile methodologies require having creative and skillful
people to be effective, leads to another argument. Using “premium” people could make
just about anything to happen and that specific type of methodology is not important
when you work with “premium” people. This suggests that perhaps the success of agile
methods could be attributed to the team of good people, rather than the practices and
principles. Alistair Cockburn agrees with this argument but explains, “If the people on the
project are good enough, they can use almost any process and accomplish their
assignment. If they are not good enough, no process will repair their inadequacy –
“people trump process” is one way to say this,” [25]. Agilists treat people as first-order
project success; they have strong belief of people-oriented approach in contrast to
process-oriented approach.

Agile methodologies have a strong emphasis on customer involvement. The customer is
considered as part of the development team throughout the whole development of the
software. The Standish Group research topped this by providing the second most
important factor for a project success is user involvement according to IT executive
mangers opinion. According to Boehm, “Agile methods work best when such customers
operate in dedicated mode with the development team, and when their tacit knowledge is
sufficient for the full span of the application” [40]. Again these methods risk tacit
knowledge shortfall. If you have one customer participant then unless they are
committed, knowledgeable, collaborative and empowered then there is some chance that
you would have a unified set of requirements. However if you have many customers you
would have different viewpoints and conflicts between them. This risk could be reduced
in plan-driven methods by using documentation, planning, architecture reviews and
independent expert project reviews to compensate for on-site customer negligence [40].

Another factor of agile methodologies that could cause problems is the interpretation of
the agile manifesto principle, “Working Software over Comprehensive Documentation”
[20]. Boehm questions the applicability of agiles’ emphasis on simplicity. Based on XP’s
concept of YAGNI precept: “You Aren’t Going to Need It,” believes that doing extra
work to get rid of architectural features that do not support the current version. This
might cause misconceptions for the developers. This approach can be useful when the
future requirements are highly unpredictable. However where future requirements are
predictable, Boehm states “this practice not only throws away valuable architecture
support for them, it also creates problems with the customers who want developers to
believe that their priorities and evolution requirements are worth accommodating” [40].

 - 27 -

Product and project documentation is a topic that has drawn a lot of attention to agile
methods. Is any documentation needed at all and if so how much is enough? Scott
Ambler points out, “Organizations demand more documentation than needed, and that
documentation is a poor form of communication” [21]. He also commented that
documentation becomes out of date and should be updated only “when it hurts”. However
documentation is needed in order to retain critical information over time. Barry Boehm
mentions, “A documented project makes it easier for an outside expert to diagnose
problems” [21]. Proposing no documentation increases a risk when considering
maintenance and usage aspects, agilists base an assumption that teams will stay together
until the very end of the software development which is not likely to happen in most
cases.

According to informants in the agile process community, agile methods seem to be light
on the user side of software i.e. User interface design and usability. As one of these
informants Alistair Cockburn mentions, “It is not a weak point- it is an absence” [42].
When it comes to user interface design, agile processes prefer simplistic forms or
iterative paper prototyping rather than model-driven design. Agilists believe that testing
of this user interface is labor intensive and time consuming. However Larry Constantine
states that, “User or client reactions to paper prototypes are no substitute and can even be
completely misleading-what people will say they like or claim is feasible when they see a
paper will often prove unworkable in practice”[42]. In short Larry Constantine adds that
user centered design qualifies as an agile process as it supplies an effective and efficient
scheme for designing highly useable user interface. .

 - 28 -

6.0 Implementation of Agile Methodologies

In software development there exists a tension between quality, cost and time. Barry
Boehm states that, “As we progress from analysis, through to design, coding, testing and
production, the cost of fixing a problem increases exponentially” [42]. The greatest
increase in cost is when fixing the problem after product introduction, a cost of
approximately 60 to 100 times more than eliminating the problem in the design phase.
Boehm suggests to reduce these costs, use heavyweight methodologies so that more time
is spent in upfront requirements gathering.

Alistair Cockburn disagrees with Boehm’s statement and reports, “As time goes by and
the program gets bigger, it costs LESS to implement a change with XP than with your
traditional methodology” [43]. In addition, Kent Beck argues that the “cost of change”
curve is said to be flat in agile modeling [42]. Moreover to strengthen this conviction they
show several XP practices to ensure that the cost associated with this curve is kept to
minimal [42]:

• Unit Testing and Test-Driven Development ensures that bugs and errors are found
quickly and early so that it would be cheaper to fix.

• On-site customer and functional testing ensure the analysis and specification of
the system is up-to-date and precise with business requirements.

• Pair programming allows two developers working together on one computer,
which increases the chances of finding bugs and leads to a simpler design

• Refactoring and “once and only once” increases design consistency and adds
more simplicity and flexibility to the structure. This ensures that the system is
well-designed and easy to change.

• Regular releases gives the customer feedback and forces the team to make the
“release to production” and maintenance phases as cheap as possible.

The above agile principles attack the roots of the high cost of fixing errors (with good
specifications, good designs, good implementation and fast feedback). But according
to Laurie Williams this does not mean that agile processes decrease or increase the
cost of developing compared to heavyweight [40]. In Figure 12 below, Williams
shows two theoretical graphs to illustrate this. Figure 12 graph a, represents the
expense of traditional methods over time and mentions that most of the expense is
spent on new development and little expense on revision which is done during the
development cycle. Conversely, Figure 12 graph b represents an agile (XP) method
project’s expense. Here the opposite occurs, demonstrating more spending on the
revision and less on the development. According to these results both graphs indicate
the same level of expense over similar time periods. William states, “Strong anecdotal
evidence suggests that the additional revision does not exceed the expense that would
have been incurred had extensive up-front requirements engineering, planning and
designing” [40].

 - 29 -

Figure 12: Cumulative Expense for Heavy and Agile Development [40]

Shine Technologies, Victoria, Australia conducted a global survey of experiences using
agile methodologies of diverse organizations from Online Computer Library to NASA.
From the survey results, 95% of the respondents believed that costs were the same or less
when using agile methods compared to when they used a traditional methodology. This
goes on to support Laurie Williams theoretical view that expense is the same for
heavyweight and agile methods over similar time. However the respondents also found
stunning improvements in productivity, quality and business satisfaction. Some of the
highlights of the findings are below [44]:

• 84.7% of respondents rated their Agile knowledge as average or above. We have
classified these respondents as “knowledgeable” for the purpose of the survey

• 49%* stated that costs were reduced or significantly reduced
• 46%* stated that costs were unchanged, resulting in 95% stating that there was

either no effect or a cost reduction
• Only 5%* stated that Agile processes had a negative effect on cost
• 93%* stated that productivity was better or significantly better
• 88%* stated that quality was better or significantly better
• 83%* stated that business satisfaction was better or significantly better
• Knowledgeable respondents were vastly more in favor of Agile processes. Only

1.8% of knowledgeable respondents found productivity degradations, but this
increased to 3.1% when taken across all respondents.

*Of knowledgeable respondents as identified in Question 1 of the survey

6.1 Implementing Agile Processes in Software Organizations

Software has been part of modern society for more than 50 years, likewise so have
software development processes [6]. However agile methods oldest methodology was
SCRUM and DSDM and they were not defined till mid-1990. Even though each
methodology has excellent anecdotal evidence and research results that their method
works, not enough statistical and metric proof has been gathered [45]. Geoffrey Moore, in

 - 30 -

his book Crossing the Chasm, describes five types of profiles of technology adopters:
Innovators who pursue new concepts aggressively; early adopters who pursue new
concepts very early in the lifecycle; early majority wait and see before buying into a new
concept; the late majority who are concerned about their ability to handle a new concept;
and laggards who do not want anything to do with new approaches [47]. According to
Scott Ambler, people that fit the innovator or early adopter would adopt agile techniques.
Moreover, since there is sufficient anecdotal evidence, the early majority are starting to
adopt agility to their organization. Furthermore he adds, “It will take several years,
perhaps even a decade, until we have incontrovertible proof that agile software
development work in practice” [45].

DaimlerChrysler was the first organization to use agile methods that introduced XP
practices with the Chrysler Comprehensive Compensation (C3) project, which is a very
successful payroll system implemented in Smalltalk. The C3 project began in January
1995 under a fixed priced contract and a year later failed to deliver a proper working
payroll system [46]. Kent Beck, the developer of XP, was called in to help with
performance tuning of C3 project and found that the code was poorly factored, there was
no repeatable tests, and the management had lost confidence in the project. Beck threw
away all the previous code and the fixed-price contract was cancelled. He reorganized the
team and made up the rules of XP that they had to follow: “putting customer on-site to
work with the developers, sharing code techniques, pairing developers, performing
automated unit testing and editing code frequently to keep it simple”[48]. All these
modifications enhanced and developed a successful payroll system that did more than
what was needed. Chrysler still uses the XP concept as Christen Wege, portal and Web
application architect, mentions, “Today, Stuttgart, Germany-based DaimlerChrysler AG
still uses extreme programming within several application development groups in the
U.S. and Germany” [46].

One of the most difficult tasks involved with using agile processes is successfully
introducing them into an organization that has been using their traditional organization
structure for years. “Part of [the Big Design Up-Front] culture is the creation of fiefdoms
within the program organization. Adopting [agile processes] will radically change the
functions of the organization within the program and consequently change the staff and
funding profiles of the organizations” [6]. Some of the traditional roles such as the
Quality Assurance and testing would resist the change as more attention and work is
needed from these roles after each iteration in an agile process. Management are
uncomfortable with not having documents to judge the progress of their project and not
having a final commitment date of delivery with a bottom line cost [6]. Still accordingly
to Chris Dial, an analyst at Forrester Research Inc, “organizations are increasingly
turning to new techniques to make the most of the smaller development teams and
contend with more complex, distributed applications” [46]. .

A Singapore lending project was declared undoable until Jeff De Luca, a project director
of Nebulon, a leading information technology firm in Melbourne, took on the project
using the agile methodology Feature-Driven Development (FDD). Previously the

 - 31 -

deliverables included 3,500 pages of use cases, an object model with hundreds of classes,
thousands of attributes (but no methods) and no code. De Luca used techniques such as
keeping code simple, testing often and delivering small features of the application as they
are ready. Within 2 months De Luca’s team was producing demonstrable features for the
client and 4 months later the project was completed and under budget. When asked what
his key to success De Luca responded was, “The key is having good people, good domain
experts, good developers and good chief programmers. No process makes up for a lack of
talent and skill” [49]. This example shows a clear example of why working code is the
ultimate arbiter of real progress. As Jim Highsmith states, “In the end, thousands of use
cases and hundreds of object model elements did not prove real progress” [49].

Caterpillar Financial Services Corp. also used an agile technique to develop a critical
web-based financial system for its dealers all over the world. The success of this project
according to Tom DePauw, manager of IT at Caterpillar, was using agile methods to
build small, usable parts of Java based applications early, rather than one large
application at the end of the project [50]. Furthermore a large US based financial
institution agrees that the need to produce functional parts of the application regularly to
the customer will drive your company to consider agile methodologies. They state
“Customers want applications in 90 days now, no matter how complex they are, and you
can’t do that with traditional methods” [51].

However, there are some downfalls in using agile methodologies in the software industry
and one of them is their over emphasis towards customer collaboration. According to
Erkki Vuorenmaa, manager of IT company in Finland, getting business people involved
in the development process is very “irritating” and awkward job, and without the
determined “good” customer it would be hard to develop a quality software [48]. Another
criticism of agile methods is concerning project costs. Agile projects have no fixed price
or fixed schedule and projects are open-ended and evolve as requirements change.
Therefore it becomes harder for the manager and customer to accept this technique as
customers would rather know the total cost of the project and overall project schedule
beforehand. On the other hand Alistair Cockburn pointed out that agile and fixed price
are not mutually exclusive. He came up with the version of agility through a succession
of fixed price projects. Cockburn explains, “In fixed price projects the price is usually
fixed to low, so you want to do everything you can to boost productivity, and that
includes using an agile process” [43].

Motorola’s experience with agile methods in its development organization found that it
was not useful for global development projects. Senior architect of Motorola believed that
the agile method [Extreme Programming] values small teams and that was not always
possible. Surprisingly some believe that after mangers hear the name ‘extreme
programming’ they get turned off. However, on the upside, agile methods provide short
daily meetings that would lead to better continual feedback; this keeps the cost to
minimal. As a manager at Sunoco Inc says, “If the consultant is incompetent or the
technology is wrong, I get the first indication after 30 days. I’m cutting my losses
quickly” [51].

 - 32 -

Agile practices have been widely accepted in many organizations due to their similarities
to CMM (Capability Maturity Model) standards. The development of the CMM has
become a standard to well-defined and well-documented software development processes
for organizations to follow to succeed in their project. Laurie Williams adds, “Many
CMM or ISO 9000 now think that partial adoption of agile practices, when handled with
care, might increase their efficiencies without damaging their certifications” [28]. Mark
Paulk, from the Software Engineering Institute, states, “XP has good engineering
practices that can work well with the CMM and other highly structured models. The key
is to carefully consider XP practices and implement them in the right environment” [53].
He goes on to show that certain agile practices of XP are similar to Level 2, 3 and some
of 4 practices of CMM (for the complete table of CMM standards refer to Appendix D).
For example, XP meets CMM Level 2 requirements management condition through its
use of stories, an onsite customer, and continuous integration. XP address software
project planning in the planning game and small releases. XP’s practices with “big visual
chart”, project velocity, and commitments for small releases meet Software project
tracking and oversight in CMM level 2. In CMM level 3 several XP practices address
software product engineering such as metaphor, simple design, refactoring, coding
standards and unit testing. XP’s strong emphasis on communication and pair
programming consecutively addresses intergroup coordination and peer reviews of CMM
level 3. Beyond level 3, XP only address as few of the Level 4 and 5 key process areas
[53]. Moreover this popularity of Extreme programming to the level of alchemy was
supported by respected people like Tom DeMarco that once stated that, “An organization
employing Extreme Programming moved from CMM Level 1 to CMM Level 4 within 5
months” [53].

6.2 Agile Methods and Offshore Development

In the past few years, many companies have turned to offshore software development for
faster, better, and cheaper development teams. According to 2003 CIO Magazine survey,
lower cost was cited by 78% of the IT executives as “... the main reason for outsourcing
offshore. The great savings were realized in the areas of labor costs (86%) and reduced
project timelines/time-to-complete (37%). Other benefits experienced as a result of
offshore outsourcing included increased IT department productivity (44%), competitive
advantage (30%), and internal customer satisfaction (20%)” [54]. With offshore
development comes no notion of physical proximity, and most offshore development
favor the plan-driven approach where business analysis, detailed requirements and design
are done at the front office(on-shore) and sent to the back office to be constructed. This
arrangement comes with a challenge for agile methodologies. Due to time zone difference
and separated by thousand of miles decreases the volume of communication between
offshore and onshore teams. However agile software methodologies place strong
emphasize on the importance of communication and improving of communication
between people involved in software development. This leads to the question: Are these
two compatible with one another, or are organizations going to have to choose between
“going agile” and “going offshore”?

 - 33 -

Offshore development is created with challenges and using parts of agile development
appear to make offshore even harder to manage. For the past few years, ThoughtWorks
has operated a lab in Bangalore India to support software development projects in North
America and Europe. Martin Fowler provides some insights on his experience and
lessons learned in doing offshore agile development rather than the traditional plan-
driven methodologies whilst working with ThoughtWorks [56].

• Use Distributed Continuous Integration to Avoid Integration Headaches - If
practiced with discipline, the process by which developers integrate their code
and build the entire system whenever they have made changes and fix errors
before they become hard to find, should reduce or eliminate configuration
management issues.

• Have Each Site Send Ambassadors to the Other Sites – As mentioned before
agile methods strongly rely on face to face human interaction. A solution to this
is to bring onshore team members to the offshore site. ThoughtWorks ensured
that at all times, there was someone from the US team present in India to
facilitate the communication. The benefits of having an ambassador are to help
everyone communicate to the right people and provide a business context to the
offshore team.

• Use Contact Visits to build trust – Ambassadors are semi-permanent people, but
this is not enough. There should be more visits by the offshore team to visit the
onshore team. These visits help to create and maintain relationships which need
to be in place for remote communication to work effectively.

• Don’t Underestimate the Culture Change – According to Fowler, one of the
hardest parts of introducing agile methods into organizations is the culture
change it causes [56]. The main reason why companies don’t adopt agile methods
offshore is because of the command and control model in which many Asian
companies follow.

• Use Test Scripts to Help Understand the Requirements – Acceptance tests help to
communicate and clarify the requirements between offshore and onshore team
members. Writing out the tests forces the offshore development team a concrete
target to aim at.

• Use Regular Builds to Get Feedback on Functionality - Fowler suggests that the
quicker the customer can look at a partial functional, the quicker they can spot
any miscommunications.

Other methods that Fowler described to get a smooth agile offshore development - Use
regular short status meetings; Use short iterations; Use an iteration planning meeting that
tailored for remote sites; When moving a code base, bug fixing makes a good start;
Separate teams by functionality bit by activity; and Expect to need more documents.

There are still many differences in opinion about the cost and benefits of using offshore
development. Offshore developments weakness is culture and distance from the business.
However agile methodologies work best with close communication and an open culture.
Its too hard to prove one approach better than the other. What is seen is growing
qualitative feedback on the benefits of agility and offshore development.

 - 34 -

7.0 Comparison of Agile and Heavyweight

Traditional development approaches have been around for a very long time. Since its
introduction the waterfall model (Royce 1970) has been widely used in both large and
small software projects and has been reported to be successful to many projects. Despite
the success it has a lot of drawbacks, like linearity, inflexibility in changing requirements,
and high formal processes irrespective of the size of the project. Kent Beck took these
drawbacks into account and introduced Extreme Programming, the first agile
methodology produced. Agile methods deal with unstable and volatile requirements by
using a number of techniques, focusing on collaboration between developers and
customers and support early product delivery. A summary of the difference of agile and
heavyweight methodologies is shown in the table below.

 Agile Methods Heavy Methods
Approach Adaptive Predictive
Success Measurement Business Value Conformation to plan
Project size Small Large
Management Style Decentralized Autocratic
Perspective to Change Change Adaptability Change Sustainability
Culture Leadership-Collaboration Command-Control
Documentation Low Heavy
Emphasis People-Oriented Process-Oriented
Cycles Numerous Limited
Domain Unpredictable/Exploratory Predictable
Upfront Planning Minimal Comprehensive
Return on Investment Early in Project End of Project
Team Size Small/Creative Large

Table 2: Difference in Agile and Heavyweight Methodologies

The agile and heavyweight methodologies both have their strengths and weaknesses.
People usually follow either one of these methodologies or follow their own customized
methodology. There are major factors affecting methodology decision and selecting
which is suitable for various conditions. These factors can be categorized into project
size, people and risk.

7.1 Project Size

One of the limitations of agile methods is project size. The key elements of project size
are project budget, duration and project team organization. The larger the team or more
budget you need, the bigger the project is. Thus compiling more requirements, requiring
more people and more coordination. Heavyweight methodologies support this by
providing plans, documentation and processes for better communication and coordination
across large groups. As seen in Figure 13 below, Alistair Cockburn one of the founders of

 - 35 -

agile alliance, claims that for a given problem size, “fewer people are needed if a lighter
methodology is used, and more people are needed if a heavier methodology is used,” and
asserts that, “There is a limit to the size of problem that can be solved with a given
number of people” [57].

Figure 13: Problem Size and Methodology Affecting Staff [54]

The larger the team also affects the communication in a project and effectiveness per
person. The figure below shows the communication load rising as the number of people
increase causing the effectiveness per person to drop. Cockburn states that methodology
is a matter of coordinating people and managing communication, therefore the level of
methodology must rise as the number of people increases. This makes it more difficult to
use agile methods with teams greater than 40 making heavyweight methodologies a
preferred option for large teams. However, Ken Schwaber, a developer of SCRUM,
disagrees with this stating, “...large teams can be decomposed into small sized teams
using scrums of scrums” [13]. Project duration is another factor used for choosing a
methodology. Heavyweight methodologies involve a lot of “time waste” outputs such as
documentation, design documents, writing analysis etc. Concluding that when time is
limited, using an agile methodology would be better.

Figure 14: Effect of Project Size [58]

 - 36 -

7.2 People Factor

Half of the agile manifesto values deal with human factors, “Individuals and
interactions…” and “Customer collaboration...” [25]. Even NASA has concluded that
technology and training are not the big factors, “The most effective practice is leveraging
human potential”. Having skill and experienced people in a team is a key factor for agile
methodologies. Encouraging domain experts to be part of the team gives developers rapid
feedback on the implications to the user of their design choices. Customer adaptability is
another great factor, the customer gets the power to check the progress and change the
direction of the software development during each iteration. Gaining this level of
commitment from the customer makes agile methodology a more attractive process than
heavyweight.

The culture of an organization is an important factor when choosing a methodology. If an
organization is solid, which is not responsive to changes and has many rules and
procedures it cannot be successful using an agile methodology. Otherwise, if an
organization is responsive or flexible, they must to adopt adaptability towards changes as
their culture if they want to apply agile methods.

7.3 Risk Factors

The most important risk factors in the development of a software process are project
criticality and responding to change. Agile methods are used in applications that can be
built quickly and do not require extensive quality assurance. Critical, reliable, and safe
systems are more suited to a heavyweight methodology. If a project is critical, all
requirements must be well defined before the development of the software. Poor
definition would result in more damage from undetected defects. Responding to change
can be resolved using an agile method. Practices defined in agile methods allow for better
handling the changes, such as constant feedback from customer and short iterative
development.

Summarizing what was said above, Table 3 demonstrates the home grounds for agile and
traditional methods, which includes the sets of conditions under which they are most
likely to succeed. The more the project conditions differs from the home ground
conditions the more the risk in using one approach over the other.

 - 37 -

Project Characteristics Agile discriminator Heavyweight
Discriminator

Primary objective Rapid Value High Assurance
Requirements Largely emergent, rapid

change, unknown
Knowable early, largely
stable

Size Smaller teams and projects Larger teams and projects
Architecture Designed for current

requirements
Designed for current and
foreseeable requirements

Planning and Control Internalized plans,
qualitative control

Documented plans,
quantitative control

Customers Dedicated, knowledgeable,
collaborated, collocated
onsite customers

As needed customer
interactions, focused on
contract provisions

Developers Agile, knowledgeable,
collocated, and collaborative

Plan-oriented; adequate
skills access to external
knowledge

Refactoring Inexpensive Expensive
Risks Unknown risks, Major

Impact
Well understood risks,
Minor impact

Table 3: Agile and Heavyweight Discriminators [40]

 - 38 -

8.0 Questionnaire

The information mentioned above is data and references from different sources. A couple
of the sources were surveys conducted by Shine Technologies, CHAOS reports and
Cutter Consortium. The following is a questionnaire (Appendix E) I developed to identify
what methodologies software practitioners in government and commercial organizations
in Perth follow to develop software for different sizes of projects. Information regarding
their opinions on agile methodology and heavyweight methodology was also collected. A
summary of the results and an analysis of the questionnaire are further discussed.

8.1 Questionnaire Format

The format of the questionnaire was developed in a way to make it easy and quick for the
respondents to answer. The questions were all close-ended and were divided into four
sections:

Organization Characteristics – This section deals with the type and size of the
organization respondent resides. In addition, the organizations willingness to adopt new
technologies and methods.

Methodology Questions – These questions rated the respondents’ knowledge of both
agile and heavyweight methodologies.

Software Development Questions – For this section the software development has been
divided into three parts depending on the size of each project. These parts were Small-
Scale project, Medium-Scale project and Large-Scale project which were categorized by
the project time (in person-months). For each category of development, I aimed to
discover the different heavyweight and agile methodologies used. Questions were also
asked to determine which aspects of the agile and heavyweight methodology most appeal
and do not appeal to the respondents in development. Furthermore, the respondents
provided feedback on whether the adoption of agile and heavyweight methodologies had
any effect on the project cost and software quality. Finally respondents gave their opinion
on what they believe is a more suitable methodology for each scaled project and to what
extent they would follow an agile technique whilst using a heavyweight methodology.

General Questions – These questions used to discover the respondent’s position and if
they wanted a report summarizing this study as an appreciation for their contribution.

 - 39 -

8.2 Questionnaire Sample Size

The organizations chosen to complete the questionnaire ranged from a small, less than 10
full time software staff, to a large organization with over 100 full time staff. Overall there
was a sample size of 15 respondents; the average time taken to complete the
questionnaire was approximately 13 minutes.

8.3 Questionnaire Results

The analysis from the questionnaire results are discussed below and all findings are found
graphically in Appendix F.

8.3.1 Results on Organization Characteristics and Respondents
Knowledge

More than 50% of the respondents were from an Information Technology type
organization, the other half were mainly from Government, Engineering and Other
organizations. Majority of medical, education and some government organizations
outsource larger software development projects to Information Technology companies.
Furthermore, from the 15 organizations, 80% ranged equally between 10 full time staff to
100 full time staff and the remaining 20% were over 300 full time staff.

Of the respondents, 93% claim to have an understanding of average or higher of agile and
heavyweight methods. 13 of the 15 respondents rate their knowledge of agile methods as
average or extensive. 14 of the 15 respondents acknowledged that their knowledge of
heavy methods was either extensive or very extensive. The respondents who had a less
than average knowledge were given a lower rating to some questions because of their
inadequate experience for this purpose.

When it comes to adopting new technologies and methods a massive 80% of respondents
characterized their organization as either a market leader or a market follower. From the
80%, the majority used an agile methodology rather than a heavyweight. This observation
supports our earlier statement concluding that majority of agile methodologies are only
being accepted by Innovators and Early adopters according to Geoffrey Moore’s Law of
Technology Adoption Curve [28]. (According to Moore, Innovators are those who pursue
new concepts aggressively. Early Adopters are those who pursue new concepts very early
in the lifecycle, followed by early majority and late majority. Laggards are those who
simply don’t want anything to do with the new approaches.[28]). The remaining 20%
described themselves conservative, ie a long time till they adopt agile methods.

 - 40 -

8.3.2 Type of Methodology used

Extreme programming was by far the most popular agile methodology used. An
interesting observation from the results collated showed that the next favorite was an in-
house methodology developed by the organization. Moreover, the respondents choose
two of the existing agile methodologies and mentioned aspects that are included in their
in-house methodology. Another remark is if the respondent chose either Scrum or XP for
a small-scale development, the same approach was reoccurring in the large-scale
development as well. This is interesting, as it appears to indicate that the need to move to
agile approaches has been independently derived by many different organizations.

As for heavyweight methodologies, approximately 55% of respondents used the
Waterfall method, 22% chose the Unified process and 15% of the respondents had their
own in-house methodology that they used for each of the different sized projects.

8.3.3 Effects of Agile methods on Software Quality and Cost
compared to Heavyweight

In this section the respondent was supposed to give their opinion on whether they believe
that taking on an agile method rather than a heavyweight method will affect the cost and
quality of software. The results were not consistent with my expectations, this could be a
result of several factors. For example, a respondent who has not used an agile method for
medium and large scaled projects could be biased on his responses.

With regards to software costs, all respondents agreed that adopting an agile process in
comparison to a heavyweight process for a small-scale project will result in a decrease in
cost. However, when it came to medium and large-scale projects the costs started to
increase for adopting an agile process rather than a heavyweight process. Approximately
53% of the respondents cast their votes in favor of the increased costs in the large-scale
projects, 26% still believe it will decrease the cost and the rest of the respondents think it
would have no effect to the cost.

When the issue of software quality was presented to the respondents, the majority of the
respondents were inclined to say that the quality improvements follow heavyweight
methodologies. More than 65% of respondents believed that there was a decrease in
quality when using agile methods for medium and large scale projects.

The findings of the effects of agile methods on quality and cost do not support my earlier
reading and observed study on this section. According to Shine Technologies 95% of the
respondents stated that there was either no effect or a cost reduction on using agile
methods. This shows that the set of respondents that I surveyed might not have used an
agile methodology in a medium or large project. Furthermore 88% of Shine technologies
respondents stated that the quality was better or significantly better using an agile method
[44]. Agile methods should improve the quality of software as agile emphasizes on
constant feedback from the customer onsite and constant communication between team

 - 41 -

members. This process allows the customer to prioritize functionality needed and discard
what is not. Figure 15 and 16 below show the results.

0

1

2

3

4

5

6

7

8

Small-Scale Medium-Scale Large-Scale

High Decrease in
Costs
Low Decrease in
Costs
No effect

Low Increase in
Costs
High Increase in
Costs
Not Sure

Figure 15: Effect of Agile Methods on Cost

0

1

2

3

4

5

6

7

8

Small-Scale Medium-Scale Large-Scale

High Decrease in Quality

Low Decrease in Quality

No effect

Low Increase in Quality

High Increase in Quality

Not Sure

Figure 16: Effect of Agile Methods on Quality

8.3.4 Agile or Heavyweight for Software development

Despite the fact that 50% of respondents believed that agile methods decrease the quality
of the software, nearly all respondents strongly agreed that they believe that agile
methods are more compatible for small-scale projects. For medium-scale projects, the
results were equally divided between agile and heavyweight methods. But for large-scale
projects the respondents favored heavyweight methods. Why? Simply because
heavyweight methods can easily plan the added complexity of running a large software
team dispersed over multiple domains, functions, and continents in a more traditional
organized way.

In the questionnaire, some respondents selected both agile and heavyweight methodology
as a suitable candidate for medium-scale projects. This shows that organizations are
slowly starting to adopt agile aspects into their heavyweight methodology for medium

 - 42 -

sized projects and soon will start implementing for larger-scale software development. In
the words of one of the respondent, “Getting an organization to switch to agile processes
takes a lot of time and patience. Find a champion who is in a position to influence
others.”

8.3.5 Likes and Dislikes of Agile and Heavyweight Methods

Whichever methodology the organization uses to develop their software there is always
going to be a set of processes and methods. Therefore, I examined the respondents’
feedback on their likes and dislikes of particular aspects of agile and heavyweight
methods for the different sizes of development.

For small scale projects there was no clear favorite agile aspect, Working Code versus
Documentation had the most with 30% and the rest followed closely after. However for
the medium and large-scale projects, Customer Relationship versus Contract Negotiation
had more than 50% of respondents’ choice and stood out as the most appealing quality of
agile methods. 40% were shared evenly between People versus Processes and Respond to
change versus following a plan, while the remaining 10% chose Working Code over
Documentation. The results are graphically shown below in Figure 17. As I discussed
earlier human factors are an important aspect to project success. According to The
Standish Group the top 2 most important factors in making a project successful have got
to do with human factors [11].

0

1

2

3

4

5

6

7

Small-Scale Medium-Scale Large-Scale

People oriented versus
Processes oriented

Working code versus
Documentation

Customer Relationship versus
Contract Negotiation.

Respond to change versus
follow ing a plan

Other (please specify)

Figure 17: Aspects of Agile Methods Most Appealed by Respondents

In case of the Dislikes of Agile methods, Less Management Control was attributed as a
downside for all kinds of software development especially small-scale and medium-scale
projects. Similarly Lack of Project Structure is another major concern to all of the
different scale projects. In fact, around 62% of the respondents sided with the fact that the
main reason for the unacceptance of agile methods for large scale projects is the
looseness of project structure in agile methods. In opposition, Bil Kleb from NASA
Research Centre stated, “Don’t be fooled into thinking that Agile methodologies are not

 - 43 -

very rigorous in terms of process. For example, XP, when used as prescribed (employing
all 12 practices), is very strict indeed” [44].

For heavyweight methodologies Heavy Documentation was always a negative aspect for
the different scaled projects. 50% of respondents did not like the fact that Heavy
Documentation is needed for small scale projects. In addition, roughly 50% of the
respondents of each medium and large scaled projects were of the opinion that they
dislike the democratic management style of heavyweight methodologies. This type of
management style does not allow the developers to be more creative and agile. According
to Boehm this decreases their motivation, “Motivation has a larger effect on quality and
productivity than any other factor” [22].

These outcomes confirm that these observations prove what was mentioned earlier in the
report. Figure 18 and 19 below clarify the results of the respondents’ results.

0

1

2

3

4

5

6

7

8

Small-Scale Medium-Scale Large-Scale

Heavy
Documentation

Comprehensive
Upfront Planning

Autocratic
management Style

Not prone to
change

Other(please
Specify)

Figure 18: Dislikes of Agile Aspects

0
1
2
3
4
5
6
7
8
9

Small-Scale Medium-Scale Large-Scale

Low Documentation

Low planning

Less Management Control

Lack of Project Structure

Other(please specify)

Figure 19: Dislikes of Heavyweight Aspects

At the same time I also collated information from respondents as to what were the major
obstacles in practicing agile methods for different sizes of software projects. Figure 20
shows that lack of skilled people who can follow agile methodologies, was the major

 - 44 -

factor in both small and medium scaled projects. Agilists agreed that a certain percentage
of experienced people are needed in an agile method to bring the project along [22]. As
Dan Mark states, “You need good, motivated people. Agile methodologies are hard work
and require a very high degree of discipline to get it right.”[15]. 60% of the respondents
agreed that the major hurdle in using agile methods for large scale projects is project size
and complexity. This was supportive to the argument I mentioned earlier in our report, as
the project size increases the number of people rises, thus increasing communication.
Agile methodologies rely heavily on communication, so large teams make it difficult to
use agile methods. There is a clear inverse relationship between agile techniques and
project complexity.

0
1
2
3
4
5
6
7
8
9

Small-Scale Medium-Scale Large-Scale

Lack of skilled people w ho can
follow agile methodologies
Lack of Top Mgmt Support

Lack of Customer Collaboration

Project Size/Complexity

Project Team Size

Other(Please Specify)

Figure 20: Common Problems in Agile Methods

Finally I measured the extent of using agile techniques for the different scaled projects.
As seen below in Figure 21 none of the respondents follow all agile techniques. For small
scale projects, averages of 58% of agile techniques are used when developing software.
So for example if the respondent was using XP on a small scale project, 7 out of 12 XP
techniques would be followed while the other 5 would either be changed or ignored to fit
the project constraints and needs. The figure shows that fewer respondents are following
agile techniques for medium and large scale projects, a weighted average of 34% and
22% respectively of the techniques were implemented in the projects. Therefore I could
wrap up by saying that as the development of software increases, there is a corresponding
decrease in the number of agile techniques used. Furthermore, respondents tend to use
heavyweight methods when the increase of project size, complexity, team, architecture,
scope, and risks occur.

0

1

2

3

4

5

Small-Scale Medium-Scale Large-Scale

100% follow all agile techniques

75% follow all agile techniques

50% follow all agile techniques

25% follow all agile techniques

Other (please specify)

Figure 21: Extent of Agile Techniques

 - 45 -

9.0 Conclusion and Future Work

In this dissertation, I described the different approaches to software development through
heavyweight and agile methodologies. Furthermore, I initially criticized on both
heavyweight and agile methodologies followed by the comparison. Further, I discussed
the implementation of agile methods based on stories and anecdotal evidence of industrial
teams experiencing success with agile methods. Moreover, I solicited and gathered
feedback from software developers through a close-ended survey questionnaire.
Although these provide valuable information about practical applications, empirical
studies are needed for evaluating the effectiveness and the possibilities of using agile
software development methods.

Throughout my research the dominance of heavy methodologies was apparent. This
consisted of comprehensive planning, heavy documentation and extensive designs. The
heavy thoughts that accompany them will be overtaken by the agile movement not far in
the future. Heavyweight approaches will still have their need in large, long lived projects
that have a special safety, reliability or security requirements. The defense industry is an
example of this; however agile approaches are starting to be adopted in these areas. Tom
DeMarco makes the analogy between military history and software development as each
swing from the relative advantages of armor to those of mobility. He states: “In the field
of IT, we are just emerging from a time in which armor (process) has been king. And now
we are moving into a time when only mobility matters” [59].

Agile development is not defined by a small set of practices and techniques. From the set
of success stories and anecdotal evidence we have come to believe that agile development
defines a strategic capability, a capability to create and respond to change, a capability to
balance flexibility and structure, a capability to draw creativity and innovation out of a
development team, and a capability to lead organizations through turbulence and
uncertainty. Heavyweight plan driven methodologies have a definite place for a less
volatile era, where rigorous processes are applicable for a wide range of projects.
However in this volatile environment and increasing uncertainty of what the customer
wants, agile methods seem to be the dominant methodology. Companies want to create
change for their competitors and respond quickly to market conditions. They plan, but are
not blinded by those plans. They focus on delivering customer value, not adding up how
many processes they have in place. They rough out blue prints (models) but concentrate
on creating working software. They focus on individuals and their skills and on the
intense interaction of development team members among themselves, customers and
management.

As I mentioned earlier, the need for business to respond rapidly to the environment in an
innovative, cost effective and efficient way is compelling the use of agile methods to
developing software. According to the surveys done by Shine Technologies, the Standish
Group and Cutter Consortium have shown that the percentage of companies using agile
methods have increased each year. Just as mobile phones have reduced the need for

 - 46 -

telephone landlines agile methods are reducing the need for heavyweight methodologies.
The future of agile methodologies seems very dominant. In general, there are some
aspects of software development project can benefit from an agile approach and others
can benefit from a more predictive traditional approach. When it comes to
methodologies, each project is different. One thing is clear: that there is no “one-size-fits-
all” solution.

 - 47 -

10.0 References

[1] D. Marks, “Development Methodologies Compared”, N CYCLES software

solutions, December 2002 , www.ncycles.com , Accessed on 2/2/2005

[2] B. Grady, C. Robert, J. Newkirk, Object Oriented Analysis and Design with

Applications, 2nd edition, Addison Wesley Longman, 1998

[3] P. Kruchten, “What is Rational Unified Process?”, The Rational Edge,

http://www.therationaledge.com/content/jan_01/f_rup_pk.html Accessed 2/2/2005

[4] C. Larman, Agile & Iterative Development: A Manager’s Guide. Addison-

Wesley, 2004.

[5] B. Boehm, “A Spiral Model of Software Development and Enhancement,” IEEE

Computer, May 1998

[6] M. Fowler, “The New Methodology,”

http://www.martinfowler.com/articles/newMethodology.html Accessed on
12/12/2004

[7] Oxford English Dictionary, http://www.dictionary.oed.com, Accessed 20/4/2005

[8] K. Beck, Embracing change with Extreme Programming. IEEE Computer,

Vol. 32, Issue 10 October 1999.

[9] K. Beck, Extreme Programming explained: Embrace change. Reading, Mass.,

Addison-Wesley, Nov16, 2004

[10] L. A. Williams, “The XP Programmer: The Few-Minutes Programmer”, IEEE

Software, pp. 16-20, May/June 2003

[11] K.Mar and K.Schwaber, “Experiences of using Scrum with XP”,

http://www.controlchaos.com/XPKane.htm, Accessed on 2/2/2005

[12] L. Rising and N. S. Janoff, The Scrum software development process for small

teams, IEEE Software, Issue 17, pp. 26-32 , 2000

[13] K. Schwaber and M. Beedle, Agile Software Development with Scrum, Upper

Saddle River, NJ, Prentice – Hall, 1st Edition, Oct 2001

[14] Advanced Development Methods, Inc., “What is Scrum?”,

http://www.controlchaos.com. Accessed on 2/4/2005

 - 48 -

[15] S.R. Palmer and J.M. Felsing, A Practical Guide to Feature-Driven Development.
Upper Saddle River, NJ, Prentice-Hall, 2002

[16] J. De Luca, “Feature Driven Development Overview,”

http://www.nebulon.com/articles/fdd/download/fddoverview.pdf, Accessed
20/4/2005

[17] Dynamic System Development Method Consortium, “DSDM Tour”,

http://www.dsdm.org, Accessed 20/2/2005

[18] J. Stapleton, Dynamic systems development method – The method in practice.

Addison Wesley 1997.

[19] J. A. Highsmith, Adaptive Software Development: A Collaborative Approach to

Managing Complex Systems. Addison Wesley 2000.

[20] W. Cunningham, “Agile Manifesto.” http://www.agilemanifesto.org/, Accessed

on 10/7/2004

[21] S. W. Ambler, “Duking it out”, Software Development, July 2002

[22] First eWorkshop on Agile Methods, Centre for Experimental Software

Engineering Maryland, April 8 2002

[23] P. Wendorff, An Essential Distinction of Agile Software Development Processes

Based on Systems Thinking in Software Engineering Management. Addison
Wesley; page 218.

[24] J. Highsmith and A. Cockburn, “Agile Software Development: The Business of

Innovation”, IEEE Computer,
http://www.jimhighsmith.com/articles/IEEEArticle1Final.pdf Accessed on
10/10/2004

[25] J. Highsmith and A. Cockburn, “Agile Software Development: The People

Factor”, IEEE Computer,
http://www.jimhighsmith.com/articles/IEEEArticle2Final.pdf Accessed on
10/10/20054

[26] J. Highsmith, Agile Software Development Ecosystem. Addison Wesley, 2002

[27] M. Fowler, “Is Design Dead?”, Software Development,

http://www.martinfowler.com/articles/designDead.html Accessed on 2/2/2005

[28] L. Williams and A. Cockburn, “Agile Software Development: It’s about Feedback

and Change,” IEEE Computer, June 2003, pp. 39-43

 - 49 -

http://fc-md.umd.edu/projects/Agile/Summary/Summary2.htm Accessed on
2/2/2005

[29] Second eWorkshop on Agile Methods, Centre for Experimental Software

Engineering Maryland, June 19 2002
http://fc-md.umd.edu/projects/Agile/secondeworkshop/summary2ndeworksh.htm
Accessed on 2/2/2005

[30] B. Barry and P. Philip, “Understanding and Controlling Software Costs”, IEEE

Transactions on Software Engineering, Vol. 14 No 10, October 1988

[31] The Standish Group International, “The CHAOS Report ,”

http://www.standishgroup.com/sample_research/chaos_1994_1.php Accessed on
2/2/2005

[32] C. Jones, Applied Software Measurements. McGraw Hill,1997

[33] M. Snider, “Simplicity Now!,” Oracle Publishing, http://www.oracle.com

Accessed on 2/12/2004

[34] K. Eisenhardt and D. Sull, “Strategy as Simple Rules,” Harvard Business Review,

Vol. 79, pp. 107-116, Jan 2001

[35] M. Popendieck, “Lean Programming,” http://www.poppendieck.com/lean.htm

Accessed on 2/2/2005

[36] A. MacCormack, “Product-Development Practices that Work: How Internet

Companies Build Software,” MIT Sloan Management Review, Vol.42, Winter
2001

[37] M. Buckingham and D. Clifton, “Now, Discover Your Strengths”, The Gullop

Organization, 2001

[38] A. Cockburn, “Characterizing People as Non-Linear, First-Order Components in

Software Development,”
http://alistair.cockburn.us/crystal/articles/cpanfocisd/characterizingpeopleasnonlin
ear.html Accessed on 2/2/2005

[39] L. Constantine, “Methodological Agility,” IEEE Software Development, June

2001, pp.67-69

[40] B. Boehm, “Get Ready for Agile Methods, with Care,” IEEE Software

Development, January 2002, pp.64-69

[41] S. Ambler, “When Does(n’t) Agile Modeling Make Sense?”,

http://www.agilemodeling.com/essays/whendoesamwork.htm#WontWork
,Accessed on 2/2/2005

 - 50 -

[42] P. Cauwenberghe, “Refactoring or Upfront design?”

http://www.agilealliance.org/articles/articles/Chapter12-VanCauwenberghe.pdf
Accessed on 2/2/2005

[43] A. Cockburn, “Reexamining the Cost of Change Curve”

http://www.xprogramming.com/xpmag/cost_of_change.htm Accessed on
2/2/2005

[44] Shine Technologies, “Agile Methodologies Survey Results”

http://www.shinetech.com/display/www/Extreme+success+with+Agile#attachme
nts Accessed on 2/2/2005

[45] S. W. Ambler, “Answering the ‘Where is the Proof That Agile Methods Work’

Question”, http//www.agilemodeling.com/essays/proof.htm , Accessed 2/2/2005

[46] L. Copeland, “Extreme programming moves slowly into the enterprise”,

Computerworld, October 2001

[47] G. Moore, Crossing the Chasm. HarperBusiness, Revised Edition 2002

[48] K. Beck, “Embracing Change with Extreme Programming”, IEEE Software,

pp.70 -77, October 1999

[49] J. Highsmith, “What Is Agile Software Development?”, The Journal of Defense

Software Engineering, pp.4-9, October 2002

[50] L. Copeland, “Caterpillar Digs Into Agile Development”, Computerworld ,

January 2002

[51] C. Sliwa , “Agile Programming techniques spark interest”, Computerworld,

March 2002.

[52] R. Charette, “The Decision is in:Agile Versus Heavy Methodologies”, Cutter

Consortium, Vol. 2 No.19, March 2002

[53] M. C. Paulk, “Extreme Programming from a CMM Prespective,” IEEE Software,

pp.19-26, Nov/Dec 2001

[54] S. Moore and L. Barnett , “Offshore Outsourcing And Agile Development” ,

Forrester Best Practices, September 20, 2004 .

[55] M. Simons, “Internationally Agile”, InformIT, March 15, 2002.

[56] M. Fowler, “Using an Agile Software Process with Offshore Development”,

http://www.martinfowler.com/articles/agileOffshore.html Accessed on 2/2/2005

 - 51 -

[57] A. Cockburn, “The Methodology Space”,

http://alistair.cockburn.us/crystal/articles/ms/methodologyspace.htm Accessed on
2/2/2005

[58] A. Cockburn, “A Methodology Per Project”,

http://alistair.cockburn.us/crystal/articles/mpp/methodologyperproject.html
Accessed on 2/2/2005

[59] K. Beck and M. Fowler, Planning eXtreme Programming. Boston Addison

Wesley, 2001

 - 52 -

APPENDIX A

Original Honours Proposal

Title: Analysis of various methodologies used in developing information

systems within organizations

Author: Mohamed Awad

Supervisor: Mr. Alex Reid and Mr. Terry Woodings

Background

One of the most valuable asset of modern corporations is information but development of
Information systems faces many problems. Problems consist of low productivity, a large
number of failures and an inadequate alignment of Information Systems with business
needs. The first problem low productivity simply demands for building new or improved
Information systems have increased faster than our ability to develop them. Second the
numbers of failures are due to economical mismatches, such as budget and schedule
overruns. An IBM’s software project survey showed that 55% of the software developed
cost more than projected, 68% took longer to complete than predicted, and 88% had to be
substantially redesigned.

Third problem from a business point of view, the link between Information systems and
organizational performance and strategies has been shown to be doubtful. Information
system development is continually challenged by the dynamic nature of business together
with the ways the business activities are organized and supported by information systems.

All the above problems are further aggravated by the increasing complexity and size of
software products. That is why companies are facing challenges in developing new
strategies for developing Information Systems as well as in finding supporting tools and
ways of working. One widely acknowledged approach to solve these problems has been
to improve and apply systematic guidelines and procedures for developing IS. The goal
of method development is to build up collective experience of IS development and utilize
it to craft systematic development practices. As a result methodical approaches are
expected to lead to more acceptable and successful solutions and to a better managed
development process. We currently find hundreds of methods of developing Information
system and new or improved methods are being introduced continuously.

In the past there used to be one main type of methodology used called the heavyweight
methodologies which consists of comprehensive planning, a lot of documentation and

 - 53 -

extensive design. New methodologies called the lightweight methodologies, aka agile
modeling, subsumes individuals over processes, working software over documentation,
collaboration over negotiation, and responding to change over following a plan.

Information system development is defined as a change process taken with respect to
object systems in a set of environments by a development group using tools and an
organized collection of techniques to achieve or maintain an objective.

Aim

During the course of the project I will endeavor to review and critique on the various
methodologies used in developing an Information system and work out which
methodology is best to use when developing a specific type of system. In order to do this
I would have to follow these steps:

1. First I would conduct a general review of Development of Information System. This
would include the concepts, issues and practices used to develop a system.

2. Literature review of both heavyweight and agile methodologies. In the heavyweight
review I would discuss a few of the heavyweight methods such as Waterfall, Spiral and
UDP. Similarly in the lightweight methodologies I would make a brief description of
agile methods such as extreme programming, SCRUM, DSDM, FDD, and Adaptive
software development. Carry out an evaluation of the strengths and weakness of all
identified methodologies

3. Next I would critique on both the heavyweight and lightweight methodologies and
provide a comparative analysis on both – the objective, scope, resources, architecture,
size and requirements.

4. Make a questionnaire to get feedback from software developers of different companies
in Perth and to find out what methodologies are used in different sized companies. A
questionnaire is a viable research method because it is an easier and quicker respondent
to answers. The questions are close ended so this provides a flexibility to code and
statistically analyse response choices.

5. Provide this questionnaire to companies in Dubai to get an international insight of what
they use in the Middle East and compare it to the results from Perth. Dubai is becoming
the centre of trade of companies from all around the world so the methodologies used
there would be from companies coming from countries like the United States, Canada
and all around Europe. This would allow us to see which of the two, heavyweight or
Agile, is used in international companies.

6. Identify and collect quantitative data on use, efficiency, time, cost success rates.

 - 54 -

Finally after completing all those steps I would be able to draw conclusions,
recommendations and principles about the state of and the process of information system
development.

Method

As mentioned above I would be dividing this project in a number of steps.
The main task in the first stage is to generalize the methods and characteristics of
heavyweight and agile methodologies. Plus provide an insight of the development of
Information system such as the concepts, issues and practices behind software
development. Then wrap up the literature review by giving our analysis and compare and
contrast heavyweight and agile methods according to different project characteristics,
such as objective, scope, resources, architecture, size, and requirements.
The second stage is to make a closed-ended questionnaire to give companies in Perth to
gather and analyse information of methodologies that are currently used.
As well I would be traveling to Dubai during the summer where I would be distributing
this questionnaire to companies there. This would provide me with an insight with the
methodologies used internationally and I could compare it with ones used in Perth.
In the third and final stage I would wrap up all the information to provide an analysis on
the different methodologies used internationally and used here in Perth. With all these
three stages I would be able to recommend and conclude on each methodology and show
which is best suited to what kind of Information System.

Plan

The following is a more detailed plan of task and milestones that I need to follow:

Task

Proposed Deadline
Semester 2

Research Proposal Week 4

Read Literature on Information System

Development
Week 5

Write up summary report on Information
System Development

Week 5

Read Literature on methodologies Week 6
Read literature on Agile methodologies Week 7

Read literature on Heavyweight
methodologies

Week 7

Read journals on Information System
Development

Week 8

Read Journals on Agile & Heavyweight Week 8

 - 55 -

Methodologies
Compare Agile methodologies Week 9

Compare Heavyweight methodologies Week 10
Write up summary report on Agile methods Week 11
Write up summary report on Heavyweight

methods
Week 12

Provide a comparison on both
methodologies

Week 13

Write up a Questionnaire for software
developers, go through it with supervisors

Week 14

Send questionnaire to companies in Dubai
Visit software developing companies in

Dubai
Make an interview with a couple

companies in Dubai
Analysis the methodologies used in Dubai

Continuing reading more reports and
journals on software development

methodology in Middle East
Provide an insight of the information read

in Dubai compared to Perth

Summer Break

Task Semester 1

2005
Revise with supervisor the information

provided from Dubai
Week 1

Send Questionnaires to companies in Perth Week 2
Make interviews with Perth software

company
Week 2

Write up report analysing questionnaire
results

Week 3

Provide questionnaire results and analysis
to companies that did the questionnaire

Week 3

Compare Results from Perth with results in
Dubai (the difference in methodologies

used)

Week 4

Write up all conclusions of information
gathered and provide pie charts, tables etc..

Week 5

Finish writing up dissertation Week 6
Draft dissertation due to project

supervisor(s)
Week 7

Thursday 21 April
Draft dissertation available for collection

from project supervisor(s)
Week 9

Thursday 5 May
Seminar title and abstract due to 4th Year

Coordinator
Week 10

4pm Thursday 12 May

 - 56 -

Final dissertation due to 4th Year
Coordinator

Week 12
4pm Thursday 26 May

Seminar presented to seminar marking
panel

Week 13
31 May - 2 June

Poster due Week 13
4pm Thursday 2 June

June
TBA

Marked dissertation available for collection
from 4th Year Coordinator

June
TBA

Corrected dissertation due to 4th Year
Coordinator

 - 57 -

APPENDIX B

Feature Driven Development Roles and Responsibilities

The six key roles in a FDD project are [9]:

Project Manager – The project manager is the administrative and financial leader of the
project. In FDD, the project manager has the ultimate say on the scope, schedule, and
staffing of the project.

Chief Architect – The chief designer is responsible for the overall design of the system
and running the workshop design sessions held wit the team. They also have the final
decision on the all designs.

Chief Programmer – The chief programmer is an experienced developer, who
participates in the requirements analysis and design of the projects. The chief
programmer is in charge of selecting the features from the feature set to be developed in
each iteration of the development process.

Class Owners – Class owners work under the guidance of the chief programmer in the
task of designing, coding, testing and documenting. They are responsible for the
development of the class they have been assigned to be the owner of.

Domain Expert – The domain expert may be a user, a client, a sponsor, a business
analyst, or a mixture of these. Their task is to possess the knowledge of how the different
requirements for the system under development should perform. Domain experts pass this
knowledge to the developers in order to ensure that the developers deliver a competent
system.

 - 58 -

APPENDIX C

Lean Manufacturing and Total Quality Management
(TQM) Rules

The basic practices of Deming's TQM movement and Ohno's Lean Production can be
summed up in these 10 points [34, 35]:

1. Eliminate waste.
2. Minimize inventory.
3. Maximize flow.
4. Pull from demand.
5. Meet customer requirements.
6. Do it right the first time.
7. Empower workers.
8. Ban local optimization.
9. Partner with suppliers.
10. Create a culture of continuous improvement

 - 59 -

APPENDIX D

Capability Maturity Model standards [53]

[table taken from 53]

 - 60 -

APPENDIX E

Software Development Methodology Questionnaire

School of Computer Science & Software Engineering

Title: Analysis of various methodologies in use for developing
 information system within organizations

Author: Mohamed Awad

Supervisors: Mr. Alex Reid and Mr. Terry Woodings

Questionnaire Confidentiality
This Questionnaire is used for a thesis done in the University of Western
Australia. The information you give will be completely confidential and at all
times, data will be presented in such a way that your identity cannot be
connected with specific published data.

For more information please contact myself, Mohamed Awad:
Email: awadm01@tartarus.uwa.edu.au
Mobile: 0401746004

Or my supervisors
Mr. Terry Woodings
School of Computer Science & Software Engineering
The University of Western Australia
M002, 35 Stirling Highway
Crawley, Western Australia, 6009

Phone
+61 8 6488 2618

Professor Alex Reid
School of Computer Science & Software Engineering
The University of Western Australia
35 Stirling Highway
Crawley, Western Australia, 6009

Phone
+61 8 9345 0440

 - 61 -

A. Organization Characteristics

1. What type of business or organization are you employed in?

Information Technology
Telecommunications
Engineering
Medical
Education
Government
Other

2. Approximately how many software professionals are employed by your
organization?

Less than 10 full time staff
10 to 20 full time staff
21 to 50 fulltime staff
51 to 99 full time staff
100 to 300 full time staff
Other

3. Do you use any Software Capability Quality standards?
(such as ISO 9000, SPICE, CMMI)

Yes
 No

4. When it comes to adopting new technologies and methods, your company is

Market Leader (expands their total market by adopting new technology)
Market Follower (happy to adopt the technology after the leader)
Conservative (only follows when technology proven)
Static (does not accept new technologies)

 - 62 -

B. Methodology Questions

5. How would you rate your knowledge of Agile Methodologies*?

Very Limited

Limited

Average

Extensive

Very Extensive

6. How would you rate your knowledge of Heavyweight Methodologies**?

Very Limited

Limited

Average

Extensive

Very Extensive

*Agile Methodologies: employ short iterative cycles, and rely on tacit knowledge within a
team as opposed to documentation .e.g. XP programming, SCRUM
* *Heavyweight Methodologies are considered the traditional way to develop software
using a requirement-design-build paradigm with standard, well- defined processes.e.g.
Waterfall

 - 63 -

C. Software Development Questions

For this section software development has been divided into three parts depending on the
size of each project.

Small-Scale Project
Project time = less than 6 person months

Medium-Scale Project
Project time = 6 person months – 4 person years

Large-Scale Project
Project time = more than 4 person years

7. Which Agile Methodology do you mostly use for different kinds of Software
development? Please specify if more than one

Small-Scale Medium-Scale Large-Scale

Extreme Programming Extreme Programming Extreme Programming
Scrum Scrum Scrum
DSDM DSDM DSDM
Feature Driven Feature Driven Feature Driven
Adaptive Software Dev Adaptive Software Dev Adaptive Software Dev
Other(please specify)

Other(please specify)

Other(please specify)

8. Which Heavy methodology do you mostly use for different kinds of Software
development?

Small-Scale Medium-Scale Large-Scale

Waterfall Waterfall Waterfall
Spiral Spiral Spiral
Unified Process Unified Process Unified Process
Other(please specify)

Other(please specify) Other(please specify)

 - 64 -

9. Which of the listed aspects of Agile Methodologies most appeal to you compared
with Heavyweight Methodologies, for the 3 sizes of software development project?

Small-Scale Medium-Scale Large-Scale

People oriented versus
Processes oriented

People oriented versus
Processes oriented

People oriented versus
Processes oriented

Working code versus
Documentation

Working code versus
Documentation

Working code versus
Documentation

Customer Relationship
versus Contract
Negotiation.

Customer Relationship
versus Contract
Negotiation.

Customer Relationship
versus Contract
Negotiation.

Respond to change
versus following a plan

Respond to change
versus following a plan

Respond to change
versus following a plan

Other (please specify)

Other (please specify)

Other (please specify)

10. Which aspect of agile methodologies, do you dislike the most for different kinds
of software development?

Small-Scale Medium-Scale Large-Scale

Low Documentation Low Documentation Low Documentation
Low planning Low planning Low planning
Less Management

Control
Less Management

Control
Less Management

Control
Lack of Project Structure Lack of Project Structure Lack of Project Structure

Other(please specify)

Other(please specify)

Other(please specify)

11. Which aspect of Heavy methodologies, do you dislike the most for different
kinds of software development?

Small-Scale Medium-Scale Large-Scale

Heavy Documentation Heavy Documentation Heavy Documentation
Comprehensive Upfront

Planning
Comprehensive Upfront

Planning
Comprehensive Upfront

Planning
Autocratic management

Style
Autocratic management

Style
Autocratic management

Style
Not prone to change Not prone to change Not prone to change

Other(please Specify)

Other(please Specify)

Other(please Specify)

 - 65 -

12. How do you believe that the cost of employing Agile Methodologies compares
with Heavyweight Methodologies for the 3 sizes of software development project?
(select one in each category)

Small-Scale Medium-Scale Large-Scale

High Decrease in Costs High Decrease in Costs High Decrease in Costs
Low Decrease in Costs Low Decrease in Costs Low Decrease in Costs
No effect No effect No effect
Low Increase in Costs Low Increase in Costs Low Increase in Costs
High Increase in Costs High Increase in Costs High Increase in Costs
Not Sure

Not Sure

Not Sure

13. Do you believe that taking on of agile methodologies rather than Heavyweight
methodologies have any effect on Software Quality for different levels of
development?

Small-Scale Medium-Scale Large-Scale

High Decrease in Quality High Decrease in Quality High Decrease in Quality
Low Decrease in Quality Low Decrease in Quality Low Decrease in Quality
No effect No effect No effect
Low Increase in Quality Low Increase in Quality Low Increase in Quality
High Increase in Quality High Increase in Quality High Increase in Quality
Not Sure

Not Sure

Not Sure

14. What do you believe is the most common problem experienced while practicing
agile methodologies for different kinds of software development?

Small-Scale Medium-Scale Large-Scale

Lack of skilled people
who can follow agile
methodologies

Lack of skilled people
who can follow agile
methodologies

Lack of skilled people
who can follow agile
methodologies

Lack of Top Mgmt
Support

Lack of Top Mgmt
Support

Lack of Top Mgmt
Support

Lack of Customer
Collaboration

Lack of Customer
Collaboration

Lack of Customer
Collaboration

Project Size/Complexity Project Size/Complexity Project Size/Complexity
Project Team Size Project Team Size Project Team Size

Other(Please Specify)

Other(Please Specify)

Other(Please Specify)

 - 66 -

15. What is the Average Size of teams that work on Software Development in each
project category, in your organization?

Small-Scale Medium-Scale Large-Scale

2-15 team members 2-15 team members 2-15 team members
15-50 team members 15-50 team members 15-50 team members
50-200 team members 50-200 team members 50-200 team members
More than 200 team

members
More than 200 team

members
More than 200 team

members

16. What do you believe is the most suitable methodology for the different kinds of
Software Development?

Small-Scale Medium-Scale Large-Scale

Agile Agile Agile
Heavy Heavy Heavy
Not Sure Not Sure Not Sure

Other(please specify)

Other(please specify)

Other(please specify)

17. Do you use any other methodology other than agile and heavy methodologies for
different kinds of software development?

Small-Scale Medium-Scale Large-Scale

Yes (please specify)

Yes (please specify)

Yes (please specify)

No No No

18. To what extent, do you follow different kinds of agile techniques for different
kinds of software development?
Small-Scale Medium-Scale Large-Scale

100% follow all agile
techniques

100% follow all agile
techniques

100% follow all agile
techniques

75% follow all agile
techniques

75% follow all agile
techniques

75% follow all agile
techniques

50% follow all agile
techniques

50% follow all agile
techniques

50% follow all agile
techniques

25% follow all agile
techniques

25% follow all agile
techniques

25% follow all agile
techniques

Other (please specify) Other (please specify)

Other (please specify)

 - 67 -

D. General Questions

Which of the following best describes your position in the organization?

Programmer / Developer
Analyst
Software Architect
Software Engineering
Consultant
Project Manager
Executive
Other (please specify)

Would you like to receive the report summarizing this study?

Yes (please provide email address below)

No

Would you like to provide details of other people who might be suitable to answer
this questionnaire? (even if only company name)

Name Company Contact Email

THANK YOU FOR TAKING THE TIME TO FILL OUT THE
QUESTIONNAIRE. It is really appreciated as it would be truly helpful for my
thesis work. Again all information is kept confidential and no organizations names
would be mentioned in any published work.
Have a nice day!

 - 68 -

APPENDIX F

Questionnaire Results for All Samples

These are the results of each questions of the questionnaire

1. What type of business or organization are you employed in?

55%

0%11%

0%

0%

17%

17%

Information
Technology
Telecommunications

Engineering

Medical

Education

Government

Other

2. Approximately how many software professionals are employed by your
organization?

13%

20%

20%

27%

0%

20%

Less than 10 full time
staff
10 to 20 full time staff

21 to 50 fulltime staff

51 to 99 full time staff

100 to 300 full time
staff
Other

 - 69 -

3. Do you use any Software Capability Quality standards?
(such as ISO 9000, SPICE, CMMI)

Yes

No

4. When it comes to adopting new technologies and methods, your company is

53%
27%

20% 0%

Market Leader

Market Follower

Conservative (only
follows when
technology proven)
Static (does not
accept new
technologies)

 - 70 -

B. Methodology Questions

5. How would you rate your knowledge of Agile Methodologies?

6. How would you rate your knowledge of Heavyweight Methodologies?

0

2

4

6

8

10

12

Very
 Lim

ite
d

Lim
ite

d

Ave
rag

e

Exte
ns

ive

Very
 Exte

nsiv
e

Agile Methodologies
Heavy Methodologies

7. Which Agile Methodology do you mostly use for different kinds of Software
development? Please specify if more than one

0

1

2

3

4

5

6

7

Low-Level Medium-
Level

High-Level

XP
Scrum
DSDM
Feature Driven
Adaptive Software Dev
Other(please specify)

 - 71 -

8. Which Heavy methodology do you mostly use for different kinds of Software
development?

0

1

2

3

4

5

6

7

8

9

Low-Level Medium-Level High-Level

Waterfall
Spiral

Unified Process

Other(please specify)

9. Which of the listed aspects of Agile Methodologies most appeal to you compared
with Heavyweight Methodologies, for the 3 sizes of software development project?

0

1

2

3

4

5

6

7

Low-Level Medium-Level High-Level

People oriented over
Processes oriented

Working code over
Documentation

Customer Relationship
over Contract
Negotiation.

Respond to change
over following a plan

Other (please specify)

 - 72 -

10. Which aspect of agile methodologies, do you dislike the most for different kinds
of software development?

0

1

2

3

4

5

6

7

8

9

Low-Level Medium-Level High-Level

Low Documentation

Low planning

Less Management
Control

Lack of Project
Structure

Other(please specify)

11. Which aspect of Heavy methodologies, do you dislike the most for different
kinds of software development?

0

1

2

3

4

5

6

7

8

Low-Level Medium-Level High-Level

Heavy Documentation

Comprehensive Upfront
Planning

Autocratic management
Style

Not prone to change

Other(please Specify)

 - 73 -

12. How do you believe that the cost of employing Agile Methodologies compares
with Heavyweight Methodologies for the 3 sizes of software development project?
(select one in each category)

0

1

2

3

4

5

6

7

8

Low-Level Medium-Level High-Level

High Decrease in
Costs

Low Decrease in Costs

No effect

Low Increase in Costs

High Increase in Costs

Not Sure

13. Do you believe that taking on of agile methodologies rather than Heavyweight
methodologies have any effect on Software Quality for different levels of
development?

0

1

2

3

4

5

6

7

8

Low-Level Medium-Level High-Level

High Decrease in
Quality

Low Decrease in
Quality

No effect

Low Increase in Quality

High Increase in Quality

Not Sure

 - 74 -

14. What do you believe is the most common problem experienced while practicing
agile methodologies for different kinds of software development?

0

1

2

3

4

5

6

7

8

High-Level Low-Level Medium-Level

Lack of skilled people
who can follow agile
methodologies

Lack of Top Mgmt
Support

Lack of Customer
Collaboration

Project Size/Complexity

Project Team Size

Other(Please Specify)

15. What is the Average Size of teams that work on Software Development in each
project category, in your organization?

0

2

4

6

8

10

12

14

Low-Level Medium-
Level

High-Level

2-15 team members

15-50 team members

50-200 team members

More than 200 team
members

 - 75 -

16. What do you believe is the most suitable methodology for the different kinds of
Software Development?

0

2

4

6

8

10

12

14

Low-Level Medium-Level High-Level

Agile

Heavy
Not Sure

Other(please specify)

17. Do you use any other methodology other than agile and heavy methodologies for
different kinds of software development?

0

1

2

3

4

5

6

7

8

9

10

Low-Level Medium-Level High-Level

Yes (please specify)

No

 - 76 -

18. To what extent, do you follow different kinds of agile techniques for different
kinds of software development?

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Low-Level Medium-Level High-Level

100% follow all agile
techniques

75% follow all agile
techniques
50% follow all agile
techniques

25% follow all agile
techniques

Other (please specify)

 - 77 -

