
This paper describes, step-by-step, how to evolve from
today’s Scrum vision of agile so ware development to a
disciplined agile solu on delivery. It begins with a brief
overview of the agile so ware development movement
and its implica ons. We then overview the Scrum method
with its associated benefi ts and drawbacks, and then how
to move beyond Scrum to a full delivery process frame-
work called Disciplined Agile Delivery (DAD). DAD is a
governed, hybrid approach that provides a solid founda-
 on from which to scale agile solu on delivery within

enterprise-class organiza ons. The steps to do this are:

Focus on consumable solu ons, not just 1. poten ally
shippable so ware
Extend Scrum’s construc on lifecycle to address the 2.
full delivery lifecycle
Move beyond method branding 3.
Adopt explicit governance strategies4.
Take a goal-based approach to enable tailoring and 5.
scaling

Going Beyond Scrum
Disciplined Agile Delivery

By Scott W. Ambler

October 2013

White Paper Series

©2013 Disciplined Agile Consor um

2

eff ecƟ vely.

The manifesto paved the way for mainstream adop-
Ɵ on of exisƟ ng lighter-weight methods such as Scrum
and Extreme Programming (XP) and laid the foundaƟ on
for new methods such as Agile Modeling (AM), Outside
In Development (OID) and many others. Each of these
methods has its strengths and weaknesses, focusing on
some aspects of the soŌ ware delivery process but down-
playing or even missing others. When someone claims
to be working on a team following the X method, a quick
inspecƟ on reveals that they’re following X with strategies
adopted from Y, Z, and other sources.

At the Ɵ me of this wriƟ ng Scrum is by far the most
popular of the agile methods, but it is far from complete
for any soŌ ware development team. Figure 1 depicts
the Scrum lifecycle, the focus of which is construcƟ on.
The Scrum method focuses on change management –
requirements are managed in the form of a prioriƟ zed
stack called a product backlog that is allowed to evolve
over Ɵ me as your customer’s understanding of their
needs evolves – and on leadership. It purposely doesn’t
address technical pracƟ ces and is explicit about the
need to look to other sources for such. It promotes the
idea that soŌ ware should be delivered incrementally in
short Ɵ me boxes called sprints, and that each soŌ ware
increment should be “potenƟ ally shippable” in that
customers have the opƟ on to have the soŌ ware deployed
into producƟ on at the end of the sprint if they deem the
soŌ ware suffi cient for their needs. Scrum teams are self-

A S D
In 2001 a group of experienced soŌ ware professionals
gathered at the Snowbird ski resort in Utah to explore
how to eff ecƟ vely develop soŌ ware. The Agile Manifesto
[1] was the result of that meeƟ ng, a philosophical treaƟ se
described in terms of four value statements supported
by twelve principles. The values of the manifesto are
wriƩ en in terms of X over Y, with the observaƟ on that
while both X and Y are important to successful soŌ ware
development the manifesto author’s experience that X
was by far the more important of the two. For example,
the fi rst value is “Individuals and interacƟ ons over
processes and tools”. What the authors are saying is
that although the processes followed by a team and the
tools that they use are important, the people and the
way that they collaborate are greater determinants of the
success of your soŌ ware development team. Throughout
this paper we use the same format to capture criƟ cal
suggesƟ ons pertaining to the successful applicaƟ on of
agile strategies.

One concept that is clearly promoted by the Agile
Manifesto, and one that since its publicaƟ on we have
seen a groundswell of support for, is a focus on the team.
Alistair Cockburn captured this philosophy best when
he claimed that “soŌ ware development is a team sport”
[2]. It requires teams to build soŌ ware-based soluƟ ons,
not just individuals, the implicaƟ on being that to succeed
at the modern soŌ ware development game we must
fi nd ways that enable teams of people to work together

Sprint
Backlog

Product
Backlog

Highest-Priority
Requirements

Sprint
(2-4 weeks)

Daily
Work

Working
System

Daily Scrum
Meeting:
Share status and
identify potential
issues

Planning session to
select requirements

for current Sprint
and to identify work

tasks

Sprint review: Demo
system to stakeholders and
gain funding for next sprint
Sprint Retrospective: Learn
from your experiences

Funding &
Feedback

Sprint
Tasks

Original Diagram Copyright Mike Cohn

F 1. T S C L .

3DisciplinedAgileConsor um.org

organizing and embrace the idea that requirements will
evolve over Ɵ me, enabling them to respond to change
easily. Scrum has helped to popularize the strategy
that it’s beƩ er to respond to change, and thereby build
soŌ ware your customer actually wants, instead of
following a plan and thereby build soŌ ware that fulfi lls a
specifi caƟ on that is no longer relevant.

D A D
Many organizaƟ ons start their agile journey by adopƟ ng
Scrum because it describes a good strategy for leading
agile soŌ ware teams. However, Scrum is only part of
what is required to deliver sophisƟ cated soluƟ ons to
your stakeholders. Invariably teams need to look to
other methods to fi ll in the process gaps that Scrum
purposely ignores. When looking at other methods
there is considerable overlap and confl icƟ ng terminology
that can be confusing to pracƟ Ɵ oners as well as outside
stakeholders. Worse yet people don’t always know where
to look for advice or even know what issues they need to
consider.

To address these challenges the Disciplined Agile
Delivery (DAD) process decision framework provides a
more cohesive approach to agile soluƟ on delivery [3].
To be more exact, here’s a defi niƟ on: “The Disciplined
Agile Delivery (DAD) decision process framework is a
people-fi rst, learning-oriented hybrid agile approach to
IT soluƟ on delivery. It has a risk-value delivery lifecycle, is
goal-driven, is enterprise aware, and is scalable.”

Let’s explore some of the key aspects of the DAD
framework. DAD is a hybrid approach which extends
Scrum with proven strategies from Agile Modeling (AM),
Extreme Programming (XP), Unifi ed Process (UP), Kanban,
Lean SoŌ ware Development, Outside In Development
(OID) and several other methods. Although DAD was
originally developed by IBM, it is a non-proprietary,
freely available framework that does not require IBM
tooling in any way. DAD extends the construcƟ on-focused
lifecycle of Scrum to address the full, end-to-end delivery
lifecycle from project iniƟ aƟ on all the way to delivering
the soluƟ on to its end users. It also supports lean and
conƟ nuous delivery versions of the lifecycle – unlike other
agile methods, DAD doesn’t prescribe a single lifecycle
because it recognizes that one strategy does not fi t all.
DAD includes advice about the technical pracƟ ces such
as those from Extreme Programming (XP) as well as the
modeling, documentaƟ on, and governance strategies
missing from both Scrum and XP. But, instead of the
prescripƟ ve approach seen in other agile methods,

including Scrum, the DAD framework takes a goals-driven
approach. In doing so DAD provides contextual advice
regarding viable alternaƟ ves and their trade-off s, enabling
you to tailor DAD to eff ecƟ vely address your parƟ cular
situaƟ on. By describing what works, what doesn’t
work, and more importantly why, DAD helps you adopt
strategies that are right for you.

One of DAD’s philosophies is that it focuses on the
delivery of consumable soluƟ ons, not just potenƟ ally
shippable soŌ ware. In addiƟ on to soŌ ware we
create supporƟ ng documentaƟ on. The soŌ ware runs
on hardware that may need to be upgraded and/or
redeployed. We potenƟ ally change the business process
around the usage of the system we’re producing. We
may even aff ect changes to the organizaƟ on structure
of the people using the system. This means that we’re
not just producing “potenƟ ally shippable soŌ ware” but
instead are producing “potenƟ ally shippable soluƟ ons”
that solve a larger business need. Moreover, producing
something that is just “potenƟ ally shippable” isn’t what
our stakeholders actually want. What they really desire is
something that’s consumable, something that they can
easily understand, adopt, support, and evolve to help
them achieve their goals.

An important strength of agile is its focus on working
closely with the customer of the soŌ ware so to increase
the chance that what you produce value for them. Non-
agile teams may choose to rely on wriƩ en, detailed
requirement specifi caƟ ons – specifi caƟ ons which oŌ en
prove to be inconsistent and just plain incorrect – which
the team then builds to. These specifi caƟ ons, in addiƟ on
to detailed schedules, architecture defi niƟ ons, and
budgets, oŌ en form a contract between the soŌ ware
team and their customers. Agilists prefer the less risky
strategy of working collaboraƟ vely with our stakeholders
all the way through the lifecycle, showing them our work
as we go and acƟ ng on the feedback that we receive.
NoƟ ce how we switched from the term customer
to stakeholder. In DAD we prefer to talk in terms of
stakeholders. The original term “customer” is more
associated with end-users and buyers, which for some
soŌ ware teams was an important shiŌ of emphasis away
from technology to business needs. The relentless focus
on customers is inadequate for enterprise environments
which tend instead to operate on client chains, with
“customers” someƟ mes not directly accessible.
Disciplined agilists also consider other stakeholders such
as operaƟ ons staff , support staff , enterprise architects,
internal auditors, and many more.

4

F D L
Disciplined agile teams recognize that there is some up-
front project iniƟ aƟ on/incepƟ on work that occurs early in
a project and similarly some deployment/transiƟ on eff ort
that occurs towards the end of a project. The end result
is that DAD promotes the idea that you need to adopt
a full delivery lifecycle, not just a construcƟ on-focused
lifecycle, an important diff erenƟ ator over Scrum. In fact
the July 2013 Agile State of the Art survey found that
agile teams reported spending an average of one month
project iniƟ aƟ on work [4]. Similarly, the November
2010 Agile State of the Art survey found that agile teams

spent an average of one month on transiƟ on eff orts [5].
We’ve found that without explicit guidance many agile
teams suff er from common mistakes such as following a
Water-Scrum-Fall approach where a tradiƟ onal, overly
heavy project iniƟ aƟ on phase occurs, followed by a Scrum
construcƟ on phase, and ending with an overly heavy
tradiƟ onal deployment phase [6]. These heavy project
iniƟ aƟ on and delivery phases increase the Ɵ me it takes
to deliver, the cost to deliver, and reduce the chance
that the team will produce something their stakeholders
actually desire. It is possible, and very desirable, to keep
both project iniƟ aƟ on and soluƟ on deployment eff orts as
light and streamlined as your situaƟ on warrants and DAD

Sprint
Backlog

Product
Backlog

Highest-Priority
Requirements

Sprint
(2-4 weeks)

Daily
Work

Working
Software

Daily Scrum
Meeting:
Share status and
identify potential
issues

Planning session to
select requirements

for current Sprint
and to identify work

tasks

Sprint review: Demo
software to
stakeholders and gain
funding for next sprint
Sprint Retrospective:
Learn from your
experiences

Funding &
Feedback

Sprint
TasksInitial

Requirements
and Release

Plan

Initial
modeling,

planning, and
organization

Initial
Architectural
Vision

Working
Software

Release
software into
production

Iteration
Backlog

Highest-Priority
Work Items

Iteration

Daily
Work

Consumable
Solution

Daily Coordination
Meeting

Iteration planning
session to select work
items and identify work

tasks for current iteration

Iteration review &
retrospective: Demo
to stakeholders,
determine strategy for
next iteration, and
learn from your
experiences

Funding &
Feedback

TasksInitial
Requirements

and Release
Plan

Initial
modeling,

planning, and
organization

Initial
Architectural
Vision

Consumable
Solution

Release
solution into
production

Work
Items

F 3. A - .

F 2. A S .

5DisciplinedAgileConsor um.org

Iteration
Backlog

Highest-Priority
Work Items

Iteration

Daily
Work

Consumable
Solution

Daily Coordination
Meeting

Iteration planning
session to select work
items and identify work

tasks for current iteration

Iteration review
& retrospective:
Demo to
stakeholders,
determine
strategy for
next iteration,
and learn from
your
experiencesFunding &

Feedback

TasksInitial
Requirements

and Release
Plan

Initial
modeling,

planning, and
organization

Initial
Architectural
Vision

Consumable
Solution

Release
solution into
production

Work
Items

Inception Construction Transition

One or more short iterations Many short iterations producing a potentially consumable solution each iteration One or more
short iterations

Stakeholder vision

Proven architecture

Sufficient
 functionality Production ready

Project viability
(several)

Delighted stakeholders

provides guidance to do exactly that.

Let’s consider what the Scrum construcƟ on lifecycle of
Figure 1 would look like if it were to explicitly address
a full delivery lifecycle. Figure 2 depicts what we
refer to as a “Scrum Delivery Lifecycle”. This lifecycle
explicitly depicts project iniƟ aƟ on acƟ viƟ es such as
iniƟ al requirements elicitaƟ on, someƟ mes referred to
as backlog populaƟ on, iniƟ al architecture modeling,
and iniƟ al release planning. During this period you
may be performing other acƟ viƟ es such as forming the
team, seƫ ng up your work environment, and securing
funding for the rest of the project. This lifecycle explicitly
indicates that the soŌ ware will need to be released into
producƟ on, or in the case of a commercial product into
the marketplace, at some point. Our experience is that
starƟ ng with a full delivery lifecycle such as this helps
teams to avoid slipping into a Water-Scrum-Fall approach
and the disadvantages associated with it.

Although many Scrum terms sound silly – you don’t
“sprint” through an enƟ re project and what the heck
is a “Scrum Master” – this change in terminology
helped people to think outside of the tradiƟ onal system
development lifecycle (SDLC) box. We’re seeing the
same problem now with exisƟ ng Scrum teams that are
struggling to think outside of the Scrum box, and we’ve
found that a simple change in terminology (e.g. iteraƟ on

instead of sprint, team lead instead of Scrum Master)
provides a clear signal to people that we’re making
another process improvement leap. InteresƟ ngly, the
“New Deal” for SoŌ ware Development [7] advocates that
we move away from the method branding we’ve seen
in recent years to the adopƟ on of clear and consistent
terminology. DAD refl ects this mindset. So, instead of
rebranding Scrum meeƟ ngs to Disciplined Agile MeeƟ ngs
we instead adopted the term “coordinaƟ on meeƟ ng”
which clearly represents what is going on. Similarly DAD
prefers terms such as retrospecƟ ve instead of sprint
retrospecƟ ve, demo instead of sprint demo, and so
on. Strategies such as coordinaƟ on meeƟ ngs, demos,
and retrospecƟ ves were generally accepted pracƟ ces
long before Scrum came along. In many enterprises the
business appreciates simpler, more familiar terminology,
and this is asgood enough a reason as any to maintain
the known terminology. Figure 3 depicts a non-branded
version of Figure 2.

One improvement depicted in Figure 3 is how it depicts
the prioriƟ zed stack of work. We use the term work
items instead of product backlog and we depict the
list diff erently. We graphically indicate that there are
diff erent types of things that teams work on, not just
new features. For example, disciplined agile team
members will work on new funcƟ onality, fi xing defects,

F 4. A .

6

helping other teams (perhaps by reviewing their work
or mentoring them), large refactoring eff orts and other
technical work, R&D spikes, regulatory documentaƟ on
submissions, and so on. All of these work items should
be prioriƟ zed and scheduled accordingly. Also, work
items are oŌ en diff erent sizes. It is common pracƟ ce to
explore the details of high priority work items, and to
disaggregate them into small chunks, and to not invest
much Ɵ me exploring or refactoring low-priority work
items as you may never get around to actually working on
them if the details or prioriƟ es evolve.

We can sƟ ll improve the lifecycle for enterprise-class
environments. A diff erenƟ ator of the DAD framework is
that it explicitly recognizes that agile teams, just like other
types of teams, are governed. Governance establishes
chains of responsibility, authority, communicaƟ on, and
funding in support of the overall enterprise’s goals and
strategy. It also establishes measurements, policies,
standards and control mechanisms to enable people to
carry out their roles and responsibiliƟ es eff ecƟ vely. You
do this by balancing risk versus return on investment
(ROI), seƫ ng in place eff ecƟ ve processes and pracƟ ces,
defi ning the direcƟ on and goals for the department, and
defi ning the roles that people play with and within the
department.

Figure 4 visually adds two important aspects of
governance, named phases and light-weight milestones.
The named phases – IncepƟ on, ConstrucƟ on, and
TransiƟ on – help to idenƟ fy the nature of the work that
a team should be focused on at the Ɵ me, and provides

context for how to organize that work. More importantly
the lifecycle now calls out several important milestones
that guide disciplined agile teams to lower overall
project risk. Several of these milestones, in parƟ cular
Project Viability and Suffi cient FuncƟ onality (what lean
pracƟ Ɵ oners refer to as a minimum viable product or
minimum marketable release) are built into Scrum but
are not explicit on the lifecycle diagram. While the phase
names were adopted directly from the Unifi ed Process
(UP) and several of the milestones as well, we renamed
the UP milestones to something more descripƟ ve. For
example DAD’s Stakeholder Vision corresponds to UP’s
Lifecycle ObjecƟ ves milestone.

There has been much ado made over the strategy of
self-organizing teams within the agile community, and
righƞ ully so as it is an eff ecƟ ve strategy. However, the
reality is that agile teams generally don’t have the
freedom to do anything that they want and to do this
work in any way that they want. Instead they must
work within the scope and constraints of a larger,
organizaƟ onal ecosystem. The DAD framework recognizes
this and instead promotes the idea that disciplined agile
teams should not work in an isolated manner but instead
should be self-organizing with appropriate governance to
guide them to greater levels of success.

Goals for the Inc eption P has e

- Form initial team
- Develop common project vision
- Align with enterprise direction
- Explore initial scope
- Identify initial technical strategy
- Develop initial release plan
- Form work environment
- Secure funding
- Identify risks

Goals for C ons truc tion P has e Iterations

- Produce a potentially consumable solution
- Address changing stakeholder needs
- Move closer to deployable release
- Improve quality
- Prove architecture early

Goals for the T rans ition P has e

- Ensure the solution is
consumable
- Deploy the solution

Ongoing Goals

- Fulfill the project mission - Improve team process and environment
- Grow team members - Leverage and enhance existing infrastructure
- Address risk - Coordinate activities

F 5. T G D A D .

7DisciplinedAgileConsor um.org

D A T A P
G D
 One process size does not fi t all. StarƟ ng in the 1970s,
a common assumpƟ on was that an “industrialized”
approach where specialists focused on their own porƟ on
of the work and then passed it on to the next specialist(s)
was an eff ecƟ ve way to organize IT work. This lead to
the waterfall or “V” model where soŌ ware development
teams were formed from specialists with roles such as
soluƟ on architect, business analyst, programmer, tester,
project manager, and many others handed batches
of work back and forth to one another. They did this
following a common process, oŌ en described in intricate
detail and supported by documentaƟ on templates, in
the belief that such prescripƟ ve bureaucracy could lead
to predictability. What it led to was expensive soluƟ ons
that were oŌ en late to market, costly, and didn’t meet
the actual needs of their stakeholders. Sadly, many
organizaƟ ons today sƟ ll suff er from this mindset and
struggle to adopt modern agile strategies as a result.

Even today with agile soŌ ware development it’s
comfortable to think that prescripƟ ve strategies such
as managing changing requirements in the form of a
product backlog, holding a daily meeƟ ng where everyone
answers three quesƟ ons, having a single requirements

owner, and other ideas will get the job done. But we
all know that this isn’t true in all situaƟ ons. There are
many strategies for managing requirements change,
there are diff erent ways to coordinate within a team,
there are diff erent ways to explore stakeholder needs,
and so on. Each of these strategies has advantages
and disadvantages and each has a range of situaƟ ons
where they are appropriate. A strategy that works for
a small co-located team will put a large geographically
distributed team at risk. A strategy that works well in a
non-regulatory environment may result in people’s deaths
in a regulatory one (or more likely fi nes because hopefully
you’ll be caught before you ship). So, if you want to
build an eff ecƟ ve team you need to be able to select the
right strategy for the situaƟ on you fi nd yourself in. DAD
describes a straighƞ orward, easy to consume process
strategy that is goal-driven. This strategy has a visual
component, process goal diagrams which summarize
the fundamental process decision points, and a textual
component, goals tables which capture and describe the
opƟ ons and their tradeoff s.

This goal-driven approach enables DAD to avoid being
prescripƟ ve and thereby be more fl exible and easier
to scale than other agile methods. For example, where
Scrum prescribes a value-driven Product Backlog ap-
proach to managing requirements, DAD instead says

F 6. P : E I S .

8

important part of the IncepƟ on phase so that we can
move towards obtaining stakeholder consensus that it
makes sense to move into the ConstrucƟ on phase and
begin building the soluƟ on. For each issue there are a
number of choices. Some choices, such as work item
stack, are bolded and italicized. This highlighƟ ng is
meant to indicate good choices as a place to start for a
typical DAD project. Some issues show an arrow beside
the opƟ ons which is an indicaƟ on that the choices at
the top are typically the most eff ecƟ ve and the beƩ er
alternaƟ ves to strive for. A typical project will make
hundreds of process decisions and these diagrams can be
used to ensure that the various opƟ ons are considered.
An example of a decision might be what view type might
we use to depict scope? DAD recommends starƟ ng with
a combinaƟ on of usage modeling, domain modeling,

Coordinate Activities

Coordinate Within
Team

Coordination meetings
Visualize work
Status meetings
Just in time (JIT) modeling
JIT planning

Coordinate Within
Programme

Coordination meetings
Visualize work
Common cadences
Product Owner team
Architecture Owner team
Management team

Coordinate Across IT

Enterprise professional as team member
Documented enterprise strategy (light)
Documented enterprise strategy (detailed)
None

Coordinate Release
Schedule

Release train
Release windows
Unique project releases
None

Share Information

Non-solo development
Conversations
Informal reviews
Formal reviews
None

Artifact Ownership Collective ownership
Disparate ownership

Coordinate Between
Locations

Gather physically at critical times
Ambassadors
Boundary spanners
Adopt collaborative tools

F 7. P : C A .

that during construcƟ on you have the goal of address-
ing changing stakeholder needs. DAD also indicates that
there are several issues pertaining to that goal that you
need to consider, and there are several techniques/prac-
Ɵ ces that could potenƟ ally address each issue. DAD goes
further and describes the advantages and disadvantages
of each technique and in what situaƟ ons it is best suited
for. Yes, Scrum’s Product Backlog approach is one way to
address changing stakeholder needs but it isn’t the only
opƟ on nor is it the best opƟ on in many situaƟ ons. Figure
5 shows the goals that are consistent with any type of
project regardless of type, whether it be custom develop-
ment or implemenƟ ng a package for instance.

Figure 6 shows an example of a process goal diagram
for the Explore the IniƟ al Scope goal. This goal is an

9DisciplinedAgileConsor um.org

and non-funcƟ onal requirements. For usage modeling,
user stories are the most popular agile approach, but
you could also create use case diagrams or personas as
needed.

A second example of a process goal diagram, in this
case for the ongoing goal Coordinate AcƟ viƟ es, is shown
in Figure 7. This diagram is interesƟ ng for several
reasons. First, some of the issues are team focused, in
parƟ cular ArƟ fact Ownership and Coordinate Within
Team. Second, several issues refl ect the fact that DAD
teams are enterprise aware and thus describe strategies
to coordinate with others external to the team. For
example, your team may need to coordinate with your
organizaƟ on’s enterprise architects and operaƟ ons staff ,
potenƟ ally adopƟ ng some of the strategies captured by
Coordinate Across IT (and you are also likely to do so via
Share InformaƟ on strategies). If your organizaƟ on has a
release organizaƟ on then your team may need to adopt
one or more Coordinate Release Schedule strategies (or,
if there’s no release team then your team will sƟ ll need
to coordinate releases with other delivery teams, and
with your operaƟ ons team, somehow). Third, several
issues address scaling factors (discussed in detail later
in this paper). For example, large teams (oŌ en called
programmes) will fi nd that they need to adopt strategies
called out by Coordinate Within Programme. Teams that
are geographically or organizaƟ onally distributed will
need to consider strategies from Coordinate Between
LocaƟ ons. Naturally if you don’t face a scaling issue such
as geographic distribuƟ on then the issue Coordinate
Between LocaƟ ons isn’t something you need to consider.

There are several fundamental advantages to taking a
goal driven approach to agile soluƟ on delivery. First,
it makes your process opƟ ons very clear. Figure 5,
in combinaƟ on with the more detailed process goals
diagrams (such as in Figure 7) nicely illustrate the range
of agile pracƟ ces available. Second, the diagrams support
process tailoring by making the process decisions explicit.
Third, scaling of agile delivery strategies is enabled by
making the strengths and weaknesses of each pracƟ ce
clear (this advice is currently captured as textual tables
in the DAD book). More on this later. Fourth, a goals-
based approach makes it clear what risks you’re taking on
because it makes your process decision opƟ ons and their
tradeoff s explicit. FiŌ h, it takes the guesswork out of
extending agile methods to address the context faced by
a delivery team.

So far we’ve idenƟ fi ed two potenƟ al challenges with
DAD’s goal-driven approach when working with customer
organizaƟ ons. First, it makes the complexiƟ es of soluƟ on

delivery explicit. Although some of us want to believe
that the simplisƟ c strategies of other agile methods
will get the job done we inherently know that soŌ ware
development, or more accurately soluƟ on delivery, is in
fact a complex endeavor in pracƟ ce. Second, some people
just want to be told what to do and actually prefer a
prescripƟ ve approach. DAD miƟ gates this problem a bit
by suggesƟ ng default starƟ ng points but even this can
be overwhelming for some people. InteresƟ ngly, when
we were wriƟ ng the book two of our 30+ reviewers were
adamantly against giving people choices because they felt
it was beƩ er to adopt a more prescripƟ ve approach as we
see in older agile methods.

D A T
E A
Enterprise awareness is one of the key aspects of the
DAD framework. The observaƟ on is that DAD teams work
within your organizaƟ on’s organizaƟ onal ecosystem,
as do all other teams. There are oŌ en many exisƟ ng
systems currently in producƟ on and minimally your
soluƟ on shouldn’t impact them. BeƩ er yet, your soluƟ on
will hopefully leverage exisƟ ng funcƟ onality and data
available in producƟ on. You will oŌ en have other teams
working in parallel to your team, and you may wish to
take advantage of a porƟ on of what they’re doing and
vice versa. Your organizaƟ on may be working towards
business or technical visions which your team should
contribute to. A governance strategy exists which
hopefully enhances what your team is doing.

Enterprise awareness is important for several reasons.
First, you can reduce overall delivery Ɵ me and cost by
leveraging exisƟ ng assets or by creaƟ ng new assets in
alignment with an enterprise-level strategy that will be
reused by upcoming projects. In other words, DAD teams
can spend less Ɵ me reinvenƟ ng the wheel and more Ɵ me
producing real value for their stakeholders. Second, by
working closely with enterprise professionals DAD teams
can more easily get going in the right direcƟ on. Third, it
increases the chance that your delivery team will help to
opƟ mize the organizaƟ onal whole, and not just the “solu-
Ɵ on part” that it is tasked to work on. As the lean soŌ -
ware development movement aptly shows, this increases
team eff ecƟ veness by reducing Ɵ me to market.

Figure 8 summarizes the four levels of awareness that an
IT professional may exhibit:

Individual awareness.• From this viewpoint it’s all
about how someone can change themselves by gain-
ing new skills, insights, experiences, and so on.

10

Team awareness. • Here the focus is how the team can
learn and improve together. This has been a primary
philosophy of the agile community for quite some
Ɵ me, mostly to our benefi t but someƟ mes to our
detriment. SoluƟ ons are developed by teams, so by
promoƟ ng a greater focus on the team, agilists are
able to improve their overall producƟ vity a bit. But, if
the eff orts of that team aren’t well aligned with the
overall goals of the organizaƟ on then doing work that
doesn’t need to be done doesn’t really help.
Enterprise awareness.• People are moƟ vated to
consider the overall needs of their organizaƟ on, to
ensure that what they’re doing contributes posiƟ vely
to the goals of the organizaƟ on and not just to the
subopƟ mal goals of their team. This is an example
of the lean principle of opƟ mizing the whole, in this
case the organizaƟ on, over local opƟ mizaƟ on within
just the team.
Community awareness.• People consider the needs of
their community, doing what they can to give back by

F 8. T .

sharing knowledge, by striving to learn themselves,
and by helping others who might not necessarily be
in their organizaƟ on or even known to them.

Enterprise awareness is an important aspect of self-
discipline because as a professional you should strive to
do what’s right for your organizaƟ on and not just what’s
right for yourself. Teams developing in isolaƟ on may
choose to build something from scratch, or use diff erent
development tools, or create diff erent data sources, when
perfectly good ones that have been successfully installed,
tested, confi gured, and fi ne-tuned already exist within
the organizaƟ on. Disciplined agile professionals will:

Work closely with enterprise professionals.• It takes
discipline to work with enterprise professionals such
as enterprise architects, data administrators, porƞ olio
managers, or IT governance people who may not be
completely agile yet, and have the paƟ ence to help
them. It takes discipline to work with your operaƟ ons

11DisciplinedAgileConsor um.org

and support staff in a DevOps manner throughout
the lifecycle, parƟ cularly when they may not be
moƟ vated to do so.
Adopt and follow enterprise guidance.• Your
organizaƟ on may have, or hopes to one day have,
a range of standards and guidelines (guidance) that
it wants delivery teams to adopt and follow. This
may include guidance for coding, user interface
development, security, and data convenƟ ons to name
a few. Following common guidance increases the
consistency and maintainability of your soluƟ ons, and
thus your overall quality.
Leverage enterprise assets. • There may be many
enterprise assets, such as reusable code, paƩ erns,
templates, and data sources that you can use and
evolve.
Enhance your organiza onal ecosystem.• The soluƟ on
being delivered by a DAD team should minimally
fi t into the exisƟ ng organizaƟ onal ecosystem – the
business processes and systems supporƟ ng them
– it should beƩ er yet enhance that ecosystem.
Furthermore, experienced DAD teams will even fi x
problems that they run into via proven refactoring
techniques, thereby reducing the costs of maintaining
these assets and extending their useful lives.
Adopt a DevOps Culture.• DAD teams will work with
operaƟ ons and support staff closely throughout the

lifecycle, parƟ cularly the closer you get to releasing
into producƟ on. This collaboraƟ on reduces the risk
of deployments and ensures a smooth transiƟ on to
support groups. DevOps philosophies and strategies
are baked right into DAD.
Share learnings. • DAD teams are learning oriented,
and one way to learn is to hear about the experiences
of others. The implicaƟ on is that DAD teams must
also be prepared to share their own learnings
with other teams. To do this organizaƟ ons might
choose to support agile discussion forums, informal
presentaƟ ons, training sessions delivered by senior
team members, and internal conferences to name a
few strategies.
Adopt appropriate governance strategies.• Eff ecƟ ve
governance strategies should enhance that which
is being governed. An appropriate approach to
governing agile delivery projects, and we suspect
other types of eff orts, is based on moƟ vaƟ ng and
then enabling people to do what is right for your
organizaƟ on. What is right will of course vary, but
this typically includes moƟ vaƟ ng teams to take
advantage of, and to evolve, exisƟ ng corporate
assets following common guidelines to increase
consistency, and working towards a shared vision for
your organizaƟ on. Appropriate governance is based
on trust and collaboraƟ on. Appropriate governance

Operate
and

support
solution in
production

Iteration
Backlog

Highest-Priority
Work Items

Iteration

Daily
Work Daily Coordination

Meeting

Iteration planning
session to select work
items and identify work

tasks for current iteration

Iteration review &
retrospective:
Demo to
stakeholders,
determine strategy
for next iteration,
and learn from
your experiences

Funding &
Feedback

TasksInitial
Requirements

and Release
Plan

Initial
Architectural
Vision

Consumable
Solution

Release
solution into
production

Work
Items

Inception Construction Transition

One or more short iterations Many short iterations producing a potentially consumable solution each iteration One or more
short iterations

Stakeholder vision

Proven architecture Sufficient functionality
Production ready

Project viability
(several)

Delighted stakeholders

Enhancement Requests
and Defect Reports

Initial
modeling,

planning, and
organization

Identify, prioritize,
and select
projects

Initial Vision
and Funding

Envision the
future

Business Roadmap,
Technology Roadmap

Consumable
Solution

F 9. T DAD A .

12

Options

Business Value

Expedite

Fixed Delivery Date

Intangible

Work items are
pulled when

capacity is available
to address them

Replenishment
modeling session

Operate
and

support
solution in
production

Enhancement Requests
and Defect Reports

New
features

Initial
Require
-ments

Initial
Architectural
Vision

Initial
modeling,

planning, and
organization

 Daily work

Retrospective

Demo

Release
solution into
production

Coordination
Meeting

Construction Transition

Continuous stream of development
Stakeholder vision

Sufficient functionality

New
features

Feedback

Learnings

Strategy

Inception

Production ready
Delighted stakeholders

Proven architecture

Identify, prioritize,
and select
projects

Initial Vision
and Funding

Envision the
future

Business Roadmap,
Technology Roadmap

strategies should enhance the ability of DAD teams
to deliver business value to their stakeholders in
a cost eff ecƟ ve and Ɵ mely manner. Unfortunately
many exisƟ ng IT governance strategies are based on a
command-and-control, bureaucraƟ c approach which
oŌ en proves ineff ecƟ ve in pracƟ ce. Chapter 20 of the
DAD book provides a comprehensive discussion of
agile governance [3].
Open and honest monitoring.• Although agile
approaches are based on trust, smart governance
strategies are based on a “trust but verify and then
guide” mindset. An important aspect of appropriate
governance is the monitoring of project teams
through various means. One strategy is for anyone
interested in the current status of a DAD project
team to aƩ end their daily coordinaƟ on meeƟ ng
and listen in, a strategy promoted by the Scrum
community. Although it’s a great strategy that we
highly recommend, it unfortunately doesn’t scale very
well because the senior managers responsible for
governance are oŌ en busy people with many eff orts
to govern, not just your team. Hence the need for
more sophisƟ cated strategies such as a “development

F 10. T DAD L .

intelligence” approach supported via automated
dashboards.

Being enterprise aware has several important implicaƟ ons
for the delivery lifecycle. First, to help teams understand
the enterprise context that they operate in we should
explicitly depict major collaboraƟ on fl ows with other
parts of the organizaƟ on. Figure 9 shows how to do so by
evolving the governed agile delivery lifecycle of Figure 4.
Note that these fl ows are not necessarily arƟ fact based,
they may represent other forms of communicaƟ on such
as face-to-face discussion.

The second implicaƟ on is that one lifecycle does not fi t
all. We have worked with several organizaƟ ons, some
as small as thirty IT staff , that had teams that followed
very diff erent lifecycles. For teams that are new to agile
the lifecycle of Figure 9 is a great place to start. But,
because of the agile philosophy of acƟ vely striving to
learn and improve your approach teams start to evolve
away from the Scrum-based lifecycle. It is common for
them to realize that pracƟ ces such as iteraƟ on planning,
iteraƟ on modeling, retrospecƟ ves, and demos do not
need to be on the same cadence, that instead they

13DisciplinedAgileConsor um.org

should be done on a just-in-Ɵ me (JIT) manner. Once they
start implemenƟ ng these improvements the concept of
an iteraƟ on/sprint disappears in favor of a conƟ nuous
fl ow of delivery. Teams will oŌ en realize that there can
be signifi cant overhead in maintain a prioriƟ ze stack of
work items (what Scrum calls a product backlog) and
instead decide to pull work into their process JIT when
they have the capacity to do so. As a result a team may
choose to evolve the lifecycle of Figure 9 into something
that looks like Figure 10 based on their growing skills and
experiences working in a disciplined agile manner.

The lean lifecycle of Figure 10 is common on sustain-
ment teams responsible for maintaining or evolving one
or more soluƟ ons. These teams typically get a steady
stream of enhancement requests, plus the occasional
defect reports, that are best dealt with in a pull-based
manner.

Over Ɵ me the book end phases, IncepƟ on and TransiƟ on,
shrink unƟ l you have more of a conƟ nuous delivery (CD)
type of lifecycle, as shown in Figure 11. In this case we
show a CD version of the lean lifecycle from Figure 10 but
we could have shown a CD version of the Scrum-based
agile lifecycle of Figure 9. InteresƟ ngly, we recently spoke
with a data warehouse (DW)/business intelligence (BI)

team taking an agile delivery approach. For the fi rst and
second release of their soluƟ on they followed a project
lifecycle similar to that of Figure 9, then adopted a lean
CD approach as in Figure 11 so that they could respond
quickly to requests for new reports and queries. In short,
disciplined agile analyƟ cs!

Our experience is that some organizaƟ ons are reƟ cent
to recognize the need to support more than one delivery
lifecycle within their IT department, oŌ en because
they recognize that this increases the diffi culty for
cross-project acƟ viƟ es such as porƞ olio management,
governance, and enterprise architecture. We’ve also
found that some organizaƟ ons are relieved that there is a
mulƟ ple-lifecycle framework such as DAD available. This
occurs when they run into trouble with methods such as
Scrum that prescribe a single lifecycle yet have teams in
situaƟ ons where a lean approach is more appropriate.
The organizaƟ ons that desire a single strategy across all
of their IT delivery teams tend to believe that repeatable
processes are desirable, a dubious assumpƟ on at best.
Our experience is that your business stakeholders are
rarely interested in this, instead they would much rather
have repeatable results. For example, stakeholders
typically desire to have their IT investment spent wisely,
to have soluƟ ons that meet their actual needs, to have

F 11. DAD’ .

Options

Business Value

Expedite

Fixed Delivery Date

Intangible

Work items are
pulled when

capacity is available
to address them

Replenishment
modeling session

Operate and
support solution

in production

Enhancement Requests
and Defect Reports

New
Features

 Daily work

Retrospective

Demo

Release
solution

Coordination
Meeting

Construction T

Continuous stream of development
Sufficient functionality

New
Work

Feedback

Learnings

Strategy

Production ready

Delighted stakeholders

14

suffi cient quality, and to have the soluƟ ons in a Ɵ mely
manner. Enabling teams to select, and then tailor, a
lifecycle which refl ects the realiƟ es of the situaƟ on that
they face is much more likely to lead to repeatable results
than a single “repeatable” process will.

P T
This paper described how to evolve from today’s Scrum
vision of agile soŌ ware development to a disciplined agile
soluƟ on delivery. These steps are:

Focus on consumable soluƟ ons, not just poten1. Ɵ ally
shippable soŌ ware
Extend Scrum’s construcƟ on lifecycle to address the 2.
full delivery lifecycle
Move beyond method branding 3.
Adopt explicit governance strategies4.
Take a goal-based approach to enable scaling5.

Scrum is a good start, but enterprise-class organizaƟ ons
need an approach which is a bit more robust. The Disci-
plined Agile Delivery (DAD) process decision framework is
that approach. For more informaƟ on about DAD, please
visit DisciplinedAgileDelivery.com. For disciplined agile
cerƟ fi caƟ on, please visit DisciplinedAgileConsorƟ um.org.
If you have any quesƟ ons about DAD, or feedback about
this paper to share with us, please contact us at ScoƩ Am-
bler.com.

R R
R
1. Beck, K. et. al. (2001). Manifesto for Agile SoŌ -
ware Development. hƩ p://agilemanifesto.org/
2. Cockburn, A. (1998). CooperaƟ ve game manifes-
to for soŌ ware development. hƩ p://alistair.cockburn.us/C
ooperaƟ ve+game+manifesto+for+soŌ ware+development
3. Ambler, S.W. and Lines, M. (2012). Disciplined
Agile Delivery: A PracƟ Ɵ oner’s Guide to Agile SoŌ ware
Development in the Enterprise. IBM Press.
4. Ambler, S.W. (2013). 2013 Agile Project IniƟ aƟ on
Survey Results. hƩ p://www.ambysoŌ .com/surveys/pro-
jectIniƟ aƟ on2013.html
5. Ambler, S.W. (2010). November 2010 Agile State
of the Art Survey Results. hƩ p://www.ambysoŌ .com/sur-

veys/agileStateOfArt201011.html
6. West, D. (2011). Water-Scrum-Fall is the Reality
of Agile for Most OrganizaƟ ons Today. hƩ p://www.cohaa.
org/content/sites/default/fi les/water-scrum-fall_0.pdf
7. Kennaley, M. et. al. (2013). The “New Deal” for
SoŌ ware Development. hƩ p://www.soŌ ware-develop-
ment-experts.com/the-new-deal.aspx

A
We would like to acknowledge the help of the following
people: Kevin Aguanno, Beverley Ambler, Mike Bowler,
Riaan du Toit, Julian Holmes, Mark Lines, Glen LiƩ le, Mark
Kennaley, and Adam Murray.

15DisciplinedAgileConsor um.org

A A
ScoƩ is a Senior ConsulƟ ng Partner of ScoƩ Ambler
+ Associates, working with organizaƟ ons around the
world to help them to improve their soŌ ware processes.
He provides training, coaching, and mentoring in
disciplined agile and lean strategies at both the project
and organizaƟ onal level. ScoƩ is the founder of the
Agile Modeling (AM), Agile Data (AD), Disciplined Agile
Delivery (DAD), and Enterprise Unifi ed Process (EUP)
methodologies. He is the co-author of Disciplined Agile
Delivery with Mark Lines, the Managing Partner of
SA+A. He is also (co-)author of several books, including
Disciplined Agile Delivery, Refactoring Databases, Agile
Modeling, Agile Database Techniques, The Object Primer
3rd EdiƟ on, and The Enterprise Unifi ed Process. ScoƩ is a
senior contribuƟ ng editor with Dr. Dobb’s Journal and his
company’s home page is ScoƩ Ambler.com.

A T D A C

The Disciplined Agile ConsorƟ um (DAC), hƩ p://DisciplinedAgileConsorƟ um.org, is the
home of the Disciplined Agile Delivery (DAD) process decision framework. The mission
of the DAC is to help organizaƟ ons and individuals around the world understand and
adopt disciplined agile ways of working. We share these strategies via white papers,
workshops, conference presentaƟ ons, and through cerƟ fi caƟ on of individual pracƟ Ɵ o-
ners.

The disciplined agile cerƟ fi caƟ on program is based on the following principles:
CerƟ fi caƟ ons must provide value •
CerƟ fi caƟ ons must be earned•
CerƟ fi caƟ ons must be respectable•
CerƟ fi caƟ ons must be focused •
CerƟ fi caƟ on is part of your learning process•
CerƟ fi ed professionals have a responsibility to share knowledge•

There are three pracƟ Ɵ oner cerƟ fi caƟ ons:
Disciplined Agile Yellow Belt.1. This beginner cerƟ fi caƟ on indicates to colleagues and
employers that you are eager to learn disciplined agile strategies that enable you to
increase your skills and abiliƟ es as a soŌ ware professional.
Disciplined Agile Green Belt.2. This intermediate cerƟ fi caƟ on indicates that you
are experienced at DAD and are on your way to becoming a generalizing specialist.
You have the potenƟ al to be a “junior coach” under the guidance of a senior coach
(someone who is likely a Disciplined Agile Black Belt).
Disciplined Agile Black Belt.3. This expert cerƟ fi caƟ on indicates that you are a trusted
expert with signifi cant profi ciency at DAD. You can coach other people in disciplined
agile strategies and advise organizaƟ ons in the adopƟ on and tailoring of the DAD
framework.

