
© Mike Beedle, All Rights Reserved Agile Management for the 21st Century

Enterprise Scrum Definition:
Agile Management for the 21st

Century

Authored, Developed and Sustained

by

Mike Beedle

Enterprise Scrum Inc.

August 4, 2014

Release 1.02

© Mike Beedle, All Rights Reserved Agile Management for the 21st Century

2

Acknowledgements

First and foremost, I would like to thank Jeff Sutherland for inventing what we now
know as modern Scrum in the fall of 1993. Without his work and inspiration
Enterprise Scrum will not be possible.

I would also like to thank Ken Schwaber for all his early contributions in defining,
documenting, explaining and popularizing Scrum from the very early days dating
back to 1994. His determination, understanding and vision of Scrum have been
instrumental on making Scrum successful worldwide.

I would also like to thank Jim Coplien for the early introduction of organizational
patterns, which are one of the foundations of modern Scrum. Without organizational
patterns there would be no modern Scrum, and little hope to expand the initial
knowledge base into Enterprise Scrum.

Lastly, I want to thank all of those of you – customers, Enterprise Scrum students,
conference attendees and fellow Scrum trainers and coaches:

1) For all the interesting conversations and shared insights
2) For all the feedback on presentations and class materials
3) For all their questions about problems on the field over the years, and
4) For the opportunity to help you in a myriad ways to implement Enterprise

Scrum in the trenches

To all the countries, skies and cities that hosted my writings, in their restaurants,
airports, cafes and bars – THANK YOU:

Lake Forest, Lviv, Munich, Frankfurt, Warsaw, Krakow, Barcelona, Brussels,
Copenhagen, Elmhurst, Oslo, Chicago, Tisvildeleje, Lansing, Buenos Aires,
Santiago, Atlanta, Cochabamba, Boston, Lima, Philadelphia, Prague, Washington
DC, Montevideo, Dallas, Fort Lauderdale, Miami, London, Toronto, New York, San
Francisco, Phoenix, Shanghai, Seattle, Key West, Nassau, Mallorca, San Diego,
Kansas City, Guadalajara, Paris, Tokyo, Nowa Jablona, Glogow, Monterrey, Berlin,
Mexico City and Madrid – where this document was finished to its first version.

I hope this is useful to all present and future users of Scrum so that they can
use Scrum for:

1) more Business-like purposes, 2) in a Generic way, and 3) scale it; if
necessary.

© Mike Beedle, All Rights Reserved Agile Management for the 21st Century

3

Change Log

1.02 Added more business references and linked Enterprise Scrum to them, such as
Running Lean, Business Model Generation, Beyond Budgeting, Smart Tribes, Tribal
Leadership, etc. Added Architecture-related parameters. Abstract 4 high-level
Enterprise Scrum patterns: Scrum Team, True Business Value, Plan by
Measurement, Adapt through Improvement Cycles.

1.01 Added more scaling references. Cross Functional Skill Matrix.

1.0 Base Definition. Enterprise Scrum naming conventions.

Business-Orientation: Multiple nested Improvement Cycles, insertion of techniques,
calculations: budgets, schedules, fixed-date, risk-management, other cumulative
metrics.

Genericity: business value, DOR, DOD, VLI types, Metrics and charts, generalized
velocities, etc.

Scaling: meeting options, rules and participants, parent, contributors, dependOn,
dependsOnUs, value list parent, global and local velocity, cumulative metrics, etc.

© Mike Beedle, All Rights Reserved Agile Management for the 21st Century

4

Contents	
1. What is Enterprise Scrum? .. 7	

Faster Change ... 7	
New Product Efficiency .. 8	
A New Kind of Management .. 9	
Empirical Process Management .. 10	
The Scrum Framework .. 12	

Brief history of Agile and Scrum .. 13	
Enterprise Scrum High-level definition ... 14	
Patterns.. 15	
Customer Driven Scrum Teams – PATTERN 1 ... 17	
True Business Value – PATTERN 2 .. 19	
Improving through Iteration – PATTERN 3 .. 20	
Forecasting and Business Value – PATTERN 4 ... 21	
Enterprise Scrum Organization .. 22	

Multi-Agent ... 22	
Unity of Purpose ... 22	
Subsumption Architecture .. 23	
Organizational Choices .. 23	
Scrum Testing Principles ... 24	

2. Enterprise Scrum Definition ... 25	
Product vs. General Business Skin ... 26	

Cultural Values .. 27	
Roles .. 27	

The Scrum Team.. 27	

scaling ... 27	
Business Owner was (Product Owner) .. 27	

scaling ... 28	
Team .. 28	

scaling ... 29	
Scrum Master ... 29	

scaling ... 30	
Process .. 30	

Vision .. 30	
Configuration .. 30	

Scrum Team Parameters ... 32	

© Mike Beedle, All Rights Reserved Agile Management for the 21st Century

5

Architecture parameters ... 32	
Business parameters .. 33	
Template parameters ... 34	
Structure Parameters ... 34	

Scrum Team .. 36	
Add a parent Scrum Team .. 36	
Unity of Purpose ... 37	
Subsumption ... 37	
Multi-Agent .. 37	

Techniques Parameters ... 37	
Value List Parameters .. 38	
Value List Instance Parameters .. 42	
Improvement Cycle Parameters ... 43	
Improvement Cycle Instance Parameters .. 46	
ALL Parameters short list ... 48	

Initial Value List .. 49	

Template Parameters ... 50	
New Project, Process, Product or Service .. 50	
Scaling .. 52	

Improvement Cycle Concepts .. 52	
Nesting Improvement Cycles .. 52	
Type vs. Instance ... 53	
Value Increment ... 54	
Metrics .. 54	
Velocity ... 55	
Calculations .. 55	

Schedules and Releases .. 56	
Burn rates .. 56	
Budgets ... 56	

Reports ... 56	
ScrumBoard .. 57	
Burndowns and other Charts .. 57	

Scaling .. 58	
Improvement Cycle .. 61	

Planning .. 61	
Sprint Planning – part one, Agree with Business Owner what to do 61	
Sprint Planning – part two, Volunteer for VLIs, make plans for the VLIs,
provide estimates for plans ... 62	

Execution .. 62	
Daily Scrums ... 62	

Review .. 63	
Retrospective .. 64	
Value List Refinement .. 64	

more Improvement Cycles ... 64	
3. Enterprise Scrum Example -- Real State sales ... 65	

Scrum Instance description ... 65	
Scrum Team Parameters ... 65	
Architecture Parameters .. 65	

© Mike Beedle, All Rights Reserved Agile Management for the 21st Century

6

Business Parameters ... 66	
Template Parameters .. 66	
Structure Parameters ... 66	
Technique Parameters .. 67	
Value List Parameters ... 67	

Value List Instance Parameters ... 68	
Improvement Cycle Parameters .. 69	
Improvement Cycle Instance Parameters .. 70	

References .. 72	

© Mike Beedle, All Rights Reserved Agile Management for the 21st Century

7

1.	 What	 is	 Enterprise	 Scrum?	 	

Faster	 Change	

The need for faster more agile management is higher every year. John Kotter,
which wrote the book Leading Change [Kotter1], has concluded that the rate of
change in business is growing exponentially [KotterForbes]. Evidence for this
argument, he says, is shorter product and service life cycles and therefore the need
for faster and better-targeted innovation.

Figure 1 Exponential Change means Exponential smaller reaction time

This is also supported by the survey in Best Practices in Product Innovation: What
Distinguishes Top Performers in 2011 by Cooper, Edgett and Kleinschmidt [CEK],
that points to an average of 45% of profit and revenue come from products and
services invented in the last 5 years, and 70% of profit and revenue come from
products and services invented in the last 5 years for the top 20% performers. When
Nonaka and Takeuchi wrote their paper first describing Scrum, The NEW new
Product Development Game [NonakaTakeuchi], the percentage of profit and
revenue for products invented in the last 5 years was measured in the 1970s to be
20% on the average, with a prediction of 33% in the 1980s. There is also an
interesting dynamic that applies when companies achieve market share with a
winning product: they get themselves into the Innovator’s Dilemma. Is it better to
continue to compete and dominate in a validated market through “sustaining
innovation” – bettering the existing products, or to pursue more “breakthrough
innovation”? [Christenssen], [Kanter], [Kaplan]. The answer is they need to do both,
of course: protect revenue and lead through innovation.

If your company is not innovating today, five years from now is likely
that it would lose 45% of its revenue and profits on the average.

© Mike Beedle, All Rights Reserved Agile Management for the 21st Century

8

Figure 2. Revenue and Profit for top 20% competitors from NEW products in 5 years

The consequences of the increasing exponential business rate of change are very
many:

• If business change in general is growing exponentially, this means that as
company managers we have an exponentially shorter reaction time to
adapt, and an exponentially shorter predictable time horizons.

• As company managers, we have much more market information to process in
a shorter time: we need to process ever-higher amounts of information of
ALL kinds with shorter reaction times (competitors, suppliers, technology,
etc.)

• This leads to stronger sharper competition – products and services either
make it or break it faster with ever decreasing product and services
lifecycles

• To compete we need to innovate and delight faster – we need to have
good coherent visions of what the customer wants or needs and bring NEW
products and services that can delight them faster to market

• This implies that we must process Customer Feedback, Market Feedback
and Technology changes faster

• We need to have more certainty in development and make predictable NEW
product announcements, so that we can pre-sell our products and services

• As competition stiffens we need better managed Products/Services
portfolios that cut down waste of non-profitable, obsolete or non-competitive
products or services

• One of the consequences of the above, is that our products and services
may need to work or fail as fast as we can, so that we can identify which
products or services we will keep in our portfolio

New	 Product	 Efficiency	

As if this wasn’t enough pressure with the sheer “accelerated rate of business
change”, there is a wide gap between among players within an industry.

Arthur D. Little which defines “New product efficiency” as New Products Sales
divided by R&D investment, in their Innovation Excellence Study [ArthurDLittle],
reveals that the best innovators are 12X more productive. This means “efficient
innovators” get twelve times more sales for the same R&D investment.

© Mike Beedle, All Rights Reserved Agile Management for the 21st Century

9

But because a large percentage of both revenue and profit comes from NEW
products and services, as we saw above, innovation efficiency is critical to
the company success, because the world has turned into an innovation
competition within every industry and market segment.

Figure 3. New Product Efficiency by Industry

What are the consequences of this gradient in New Product Efficiency?

• Winners innovate faster with less percentage investment
• Winners optimize ROI on new product and service development, investing

the lowest possible to get the maximum sales, profits and/or market
share.

• Innovation takes place anywhere in the process: strategy, marketing,
technology, customer feedback.

• Winners often get larger market share faster (market share is not
necessarily a measure of profitability but is still a measure of competitive
advantage)

• Winners have a higher revenue and profit percentage from NEW
products and services in shorter times

• New Product Development efficiency differences can be very large
1200% among slow and fast innovators (new product sales vs. R&D
investment)

• Product Development Efficiency is good measure of business
SUCCESS, specially in today’s environments – we want to generate the
highest profits with the lowest re-investment in the shortest possible time

A	 New	 Kind	 of	 Management	

As we reached our conclusions from both the exponential rate of business change
and the New Product Efficiency sections, one clear picture emerges:

© Mike Beedle, All Rights Reserved Agile Management for the 21st Century

10

To manage and lead our companies to be successful in the 21st century
we need faster, more efficient and customer-driven innovation to obtain
higher profits and revenue – just like Nonaka and Takeuchi concluded in
their HBR paper back in 1986

Except, in today’s environment of more complex business models, we need to
reinvent our entire companies not only one product at a time:

the product is the company itself.

We can use our same trusted technique for rapid innovation – Scrum, just as
Nonaka and Takeuchi concluded, but now for the entire enterprise. Or to give it a
name, we need Enterprise Scrum.

Some people have already started to practice and write about this new style of
management. For example, Steve Deming – a Scrum Alliance board member, wrote
the book Radical Management [RadicalManagement].

Empirical	 Process	 Management	

Where is most change and uncertainty come from in an enterprise? Change is
everywhere, and it can come from very many different directions, but where does the
most critical change come from? The process answer to this question is: from
business processes that are open information systems.

Figure 4. Development-Like processes are Open Information Systems

The processes of an enterprise can be broadly divided into production (or defined)
processes and development (or empirical) processes. Defined processes are
processes that can be changed at a slower pace while development-like processes
need faster, higher-frequency, often larger and more pointed changes in time.
Defined processes execute with all the steps known in advance, while development-
like or empirical processes execute while still admitting new information into the
process [ProcessControlTheory].

Defined processes are processes like production, manufacturing, accounting,
payroll, or customer service. A manufacturing process can be improved but the
steps involved as it executes in that version or instance of the process are known.

© Mike Beedle, All Rights Reserved Agile Management for the 21st Century

11

Production-like processes should be optimized through Lean Production techniques
– Lean Principles and Lean Techniques applied to production-like processes [Ohno],
[Wommanck1], [Wommanck2], [Wommack3]. Most Global 5000 Companies have
been optimizing their production-like processes using these techniques for nearly 30
years, and longer in Japan.

Development processes on the other hand, are processes like strategy, marketing,
product/service development or R&D; that can admit new information leading to new
steps as the process executes. In these processes major changes can occur even
within a few days with a new partnership, a new product offering by a competitor, or
a new discovery in R&D. In parallel to Production-like processes, Development-like
processes should be optimized with Lean Development techniques.

But the fact is, development-like processes, which will give in fact most
of the top-line and competitive advantage to firms in the 21st century,
have not yet been optimized hardly at all.

Why? Because in the 20th century, most Global companies spent most of their
efforts optimizing their production-like processes, and because it was not very clear
how these development-style processes were different from defined processes, or
how to optimize the development-like processes. Knowing and understanding this
difference is understanding the power of Scrum:

Scrum is a compact, easy-to-understand, and well-proven Lean
Development technique that can provide empirical process management
for any business process.

Any process instance within the enterprise that has a development-style flavor can
be better served by using Scrum than by a defined style process. A development
style flavor process instance is a process instance where there is high uncertainty
because:

1) NEW information is still flowing into the system.
2) changes happen frequently (business, market or technology),
3) understanding existing or new information is hard and misunderstandings are

easy,
4) people and teams change over time,

Empirical process management assumes an open information system, where we
must adapt as new information comes in, or as our understanding of the up-front
conditions becomes better. Empirical process management is based on
transparency, inspection and adaptation:

Transparency – so that everything is visible and understood through a common
language including the domain and basic Scrum definitions like DOR or DOD
Inspection – so that we can determine through agreed measurements the current
state in terms of a common understanding of the goals and the standards
Adaptation – so that we can improve

For example, the true state of a company must be transparent, so that we can
inspect its current market position, and then adapt to improve its strategic position.

© Mike Beedle, All Rights Reserved Agile Management for the 21st Century

12

Figure 5. New Information and more understanding make Development-like processes uncertain

As such, processes like Strategy, Marketing, Product Development, Software
Development, Basic Research, Business Process Re-Design are better managed
with Scrum (empirical process management) rather than by traditional defined-
process style project or process management. These are in fact the top-line
processes that will give Agile companies competitive advantage in the 21st century.

As we will see, collections of defined process instances also have an empirical flavor
because of the statistics of the defined processes, so Scrum is also a very useful
framework for managing collections of defined processes.. Moreover, because
process redesign is a creative process, Scrum can also be used effectively for this
purpose.

These are not just “good ideas”, there are many companies that are already
taking advantage of this style of management to adapt faster and out-innovate
its competitors.

The	 Scrum	 Framework	

Scrum is a process framework for product development that delivers the most
business value in the shortest possible amount of time. Because Scrum is a
framework, we can fit many techniques for product development. We will not spend
much time describing basic Scrum [ScrumGuide]. Instead, we assume that the
reader already knows basic Scrum and that he or she wants to use Scrum for more
business purposes, in a generic way, or that you are interested in scaling its
application.

The purpose of Enterprise Scrum is not to redefine any aspects of
Scrum. Rather, the purpose of Enterprise Scrum is to provide an
expanded and more detailed framework foundation of Scrum so that we
can use Scrum for business, generic or scalable purposes.

Enterprise Scrum is not a different version of Scrum, or a different flavor of Scrum;
Enterprise Scrum is simply a powerful detailed abstraction of Scrum. We strongly
encourage the reader to read the Scrum Guide as the only place where Scrum is

© Mike Beedle, All Rights Reserved Agile Management for the 21st Century

13

defined [ScrumGuide]. Scrum is also described in detail at the Agile Atlas
[AgileAtlas].

Brief	 history	 of	 Agile	 and	 Scrum	

The origin of Agile ideas in business started with the creation of the Agile Consortium
and the publication of The 21 century manufacturing enterprise strategy in 1991
[Nagel1] and described in detail in the book Agile Competitors and Virtual
Organizations: Strategies for Enriching the Customer [AgileCompetitors]. In software
these ideas are continued and unified by the creation of the Agile Manifesto
[AgileManifesto]. There were many early ideas that pointed that this was a good
direction from the very early ways. See for example, Mythical Man Month [MMM],
Peopleware [PeopleWare], and Wicked Problems, Righteous Solutions: A Catalog of
Modern Engineering by Peter DeGrace, Leslie Hulet Stahl.

The origin of the Scrum ideas comes from product development in Toyota [Ohno],
[Liker1], [Wommack1] i.e. Toyota Product Development System (TPDS) [Liker2].
Lean and Agile product development eventually made it into other Japanese
companies, such as Honda, Fujitsu, Cannon, etc. See Nonaka and Takeuchi’s The
NEW new product development game [NonakaTakeuchi].

TPDS [Liker2], and other similar development styles emerged after using for the
purposes of development some of the principles and techniques of the Toyota
Production System (TPS) [Ohno], which itself emerged from the TWI (Training Within
Industry program) [TWI].

However, Jeff Sutherland invented “modern Scrum”, the basis for Enterprise Scrum,
in 1993 by putting together three concepts together:

1) the ideas from Nonaka and Takeuchi explained in The NEW new product
development game [NonakaTakeuchi].

2) Organizational Patterns, recurring best practices in successful teams first
documented by Jim Coplien after analyzing what hyper-productive teams
were doing [Coplien] [OrgPatterns], and the

3) Subsumption Architecture, the concepts of artificial intelligence discovered by
Rod Brooks [Brooks1], [Brooks2].

The first book on “modern Scrum” (and Agile) was Agile Software Development with
Scrum [AgileSoftwareDevelopment], but now there are many other good books on
the subject.

As we will see, the understanding of this history will be very important to understand
Enterprise Scrum, as Enterprise Scrum is a continuation of these original ideas, but
now extended to the enterprise as a whole. There have been some early attempts to
create frameworks for agile companies, see for example, cOOherentBPR: A pattern
language to build Agile organizations [Beedle-cOOherentBPR-1997], or Enterprise
Architecture Patterns: Building Blocks of the Agile Company [Beedle-
EnterpriseArchitecturePatterns-1998].

© Mike Beedle, All Rights Reserved Agile Management for the 21st Century

14

Figure 6. Standish Group, CHAOS Manifesto results 2012

Today	 we	 know	 Scrum	 is	 better	 than	 other	 styles	 of	 management	 in	 software	
development	 –	 see	 for	 example	 the	 Standish	 Group’s	 CHAOS	 report	 [StandishGroup];	 but	
we	 are	 starting	 to	 get	 empirical	 evidence,	 that	 Scrum	 is	 just	 better	 management	 for	 any	
business	 process.

Enterprise	 Scrum	 High-‐level	 definition	

So, if we need to agilize everything – empirically manage everything, and allow
innovation anywhere within the enterprise, how can we use Scrum for this purpose?

Enterprise Scrum is about extending, generalizing, and parameterizing regular
Scrum so that Scrum can work:

1) more Business-like (business cycles, releases, business metrics, adding
business techniques).

2) In a Generic way, at different levels or the organization (executive,
middle management, program/project level, etc.), and for different
business process (company management, marketing, sales, product
development, software development, research, audit, etc.),

3) in a Scalable way, by having multiple Scrum teams working together a)
independently, b) in cooperation for the same purpose – we defined this as
scaling mode, or c) with different purposes but in cooperation – we defined
this as networking mode

© Mike Beedle, All Rights Reserved Agile Management for the 21st Century

15

Figure 7. Enterprise Scrum: business-like, generic, scaled Scrum

Therefore, we formally define Enterprise Scrum as:

Enterprise Scrum is the extended, generalized and parametrized
application of Scrum for 1) more business purposes, 2) in a generic way
-- at different levels in the organization and for different business
processes, and 3) in scaled mode (distributed and/or cooperative).

In Chapter 2, Enterprise Scrum Definition, we show the exact definition of Enterprise
Scrum, describing how through parameters we can customize Scrum to be business-
like, generic and scaled. The Enterprise Scrum Definition also includes some
guidance and examples as to how to implement Enterprise Scrum. In chapter 3, we
provide a full Enterprise Scrum example.

Patterns	

These extensions and parameters come as conclusions from observing very many
instances of Scrum in different domains and industries since 1995. Therefore:

Enterprise Scrum emerged from the observation of thousands of Scrum
projects and processes in different domains and different industries
where people in the trenches had already informally customized Scrum
for the purpose of doing Agile Management.

Business

Generic Scaled

Scrum

© Mike Beedle, All Rights Reserved Agile Management for the 21st Century

16

Figure 8. Scrum is being applied EVERYWHERE.

There are thousands of examples, ranging from startup management, through mid-
sized companies, and Global 5000 companies. The definition of Enterprise Scrum
emerged from the trenches -- from all the instances of Scrum for different purposes
that I have either implemented, observed, heard about, discussed formally or
informally, consulted on, taught about, or mentored on.

So the process by which these patterns have been found and validated is by
observing the world and mining patterns, and then applying the patterns and
verifying that the patterns work in the real world [Alexander]:

• Pattern Analysis (or mining): analyze World ! get Patterns from success

stories
– Successful patterns abstracted from successful projects and pattern

instances
• Pattern Application: apply Patterns ! achieve success stories in the world

– Successful projects achieved after applying the patterns

Many companies, projects and processes have benefited from the application of
these patterns. In my estimation, there are at least 100,000 people doing Enterprise
Scrum, and possibly as many as 1,000,000 by a very conservative estimate.

My prediction is that in the future, this style of management will grow in adoption and
that it will cause what historians will call perhaps “the Agile Management Revolution”,
“the Innovation Revolution”, or maybe “the Knowledge Worker Revolution”. Steve
Denning, now a board member at the Scrum Alliance, calls it “Radical Management”
[RadicalManagement].

Many of these patterns unfortunately have not been properly documented in the
proper organizational patterns form, which follows the seminal work started by Jim
Coplien back in 1993 [Coplien]. However, some of us at the ScrumPLOP working
group will continue to document these patterns and in the future plan to publish a
book on it [ScrumPLOP].

Here is a brief list of some of the early companies and projects where Scrum was
first practiced in a generic, scaled or more business-like purposes:

© Mike Beedle, All Rights Reserved Agile Management for the 21st Century

17

• VMARK – senior management Scrum, 1995
• IDX – first scaled up Scrum, 1996
• Individual – scaled up Scrum, 1996
• CVS/Caremark – scaled-up Scrum (25+ teams), 2001
• New Governance Inc. – company management, 2001
• PatientKeeper – company management, 2001

Today there are many other examples like New Governance Inc., Scrum Inc.,
Cars.com, SalesForce.com, the Scrum Alliance, Hewitt, ABN Amro, IBM, Total
Attorneys, Systematic, Trifork, Spotify, etc. These are the type of companies and the
kind of processes, programs and projects in them that led to Enterprise Scrum. Jeff
Sutherland gives us very many other example in his new book Scrum: The Art of
Doing Twice the Work in Half the Time [Sutherland].

There is also a lot of related guidance as to how to structure, manage, and transform
organizations that innovate with or without Scrum:

• good companies [Collins1], [Collins2], [Hamel1], [Hamel2], [Nonaka-
KnowledgeCreating], [Nonaka-PragmaticStrategy], [Nonaka-
KnowledgeCreationAndManagement], [Hoshin1], [Hoshin2], [Porter1],
[Porter2], [BalancedScorecard], [ToyotaWay], [Nonaka-ManagingFlow],
[ScenarioPlanning]

• good business processes [Hammer], [Wommack2], [Wommack3]
• good products and services [Coplien], [DesignThinking], [CEK],

[Poppendieck], [DistributedScrum]
• agile business management - [RadicalManagement], [BeyondBudgeting],

[LittleBets]
• business models and startup management - [LeanStartup],

[BusinessModelGeneration], [RunningLean], [ProfitZone]
• teams [Management3.0], [Atkins], [Katzenbach]
• culture [TribalLeadership], [SmartTribes]
• transformation [HBR-ChangeManagement], [LeadingChange],

[RisingManns]
• agile and Scrum scaling, [Eckstein], [DAD], [Schiel], [LeSS1], [LeSS2],

[Kniberg], [SAFe], [StoberHansmann], [Cohn3], [Schwaber], [Rawsthorne],
[Schliep], [AgileSoftwareDevelopment]

• agile and Scrum distribution [DistributedScrum]innovation [Peters],
[Pink1], [Pink2], [SchwaberSuthterland], [PowerOfScrum], [Stacey]

As we have found, there is a lot of overlap with some of these techniques with
companies that practice Enterprise Scrum: they use some of the same patterns.

Customer	 Driven	 Scrum	 Teams	 –	 PATTERN	 1	

The most important Enterprise Scrum organizational pattern is that the we should
organize our companies in terms of what is important to our customers as a whole –
not by functional departments that become functional silos like Strategy, Marketing,
Product Development or Customer Service.

© Mike Beedle, All Rights Reserved Agile Management for the 21st Century

18

As a general rule:

create a Scrum Team for every product, service, process, program or project
that a customer buys or uses. Enterprise Scrum is a business thing: it’s a
process framework to deliver the most business value to a customer.

If the market of a company for a product or service is segmented we need different
Scrum Teams. If the company is diversified we most certainly need different Scrum
Teams, maybe even operating under a different business model.

The main rationale for this is that the timeframes to create a product or service have
decreased dramatically due to competition, the product and the process to create
need to be more synchronized in time – so we no longer can’t create a phase-based
or stage-based organization. This means that we can’t we use the “business
waterfall”, strategy->marketing->product development->customer feedback, to create
new products and services – it is too slow and unresponsive for the competitive
world in which we live today. So must avoid functional departments or component-
oriented organizations.

Figure 9. Business Waterfall

Change, feedback and therefore innovation can happen in strategy, marketing,
product development, or customer feedback, and we must be willing to inspect and
adapt in order to better serve our customers.

Therefore, in Scrum, we prefer all-at-once process models that include strategy,
marketing, product development and customer feedback where adjustments can be
made on everything as make progress taking advantage of all the feedback from any
process area.

Figure 10. Enterprise Scrum is ALL at once management: across functions and time

By definition, a Scrum team always has:
• One Business Owner per Product, Service, Process or Program
• One Scrum Master (which could be shared with other teams)
• One Team, which are the people that implement the value list (product

backlog), even if they delegate other do actually do the work

Strategy
Blue/Red	 Ocean
CFD,	 5	 force

Marketing
FGs,	 surveys,	
interviews,	
feedback	

Product/Service	
Development
DT,	 Kano

Customer	
Feedback
Split	 Tests

Strategy
Marketing

Product/Service	 Development
Customer	 Feedback

© Mike Beedle, All Rights Reserved Agile Management for the 21st Century

19

• One set of stakeholders, which can be of size zero, or larger
• One value list per Team (even if the list is a sublist of a larger value list

(product backlog) for multiple teams.

In a Scrum-managed company where we manage through Scrum everything
relevant to our customers (internal or external); it makes sense to talk about our
“Scrum portfolio” as being composed of products, services, processes, programs
and projects.

Our goal is to create a team that really cares about a certain type of cutomer – a
customer-oriented and dedicated Smart Tribe, if you will [SmartTribes]. Both Scrum
and Enterprise Scrum have a great deal of cultural overlap with this concept.

Lastly, in a Scrum-managed company, we prefer to have a more flexile budgeting
process, rather than a rigid yearly budgeting process that by definition will be always
wrong. This matches well with the concept of Beyond Budgeting [BeyondBudgeting].

True	 Business	 Value	 –	 PATTERN	 2	

Enterprise Scrum is a process framework to deliver the most business value in the
short amount of time. True business value is not “business value” as defined in
Scrum, which is mostly “potential business value” through Sprints (1-4 week
timeboxes). This is a good start but True Business Value in Enterprise Scrum is a
business relevant metric: revenue, profit, ROI, market share, or a measure of
competitive advantage. The timeframes to achieve true business value vary, but are
typically longer than those to achieve “potential business value”.

To have empirical evidence that we have obtained some business value we must
measure it appropriately, and then try to improve the delivery of business value in
the future. Therefore, a business-oriented Improvement Cycle must be the driver, in
terms of measured business value, and our decisions should be made so as to
deliver more business value in future Improvement Cycles. Typical business-
oriented improvement cycles are of lengths of at least one month for the most agile
companies, and quarterly for most other ones.

We will see how we can improve the delivery of True Business Value through tools
like Lean Startup, Blue Ocean Strategy, Scenario Planning, Profit Zone, etc..

With this expanded view of business value, we see the following benefits:

• Customer Feedback in any activity of the Business Cycle. How satisfied
with the customers are with our products or services while we develop
solutions, deploy them, or while the customers use them. Regular Scrum only
manages development – so that we can improve whatever we are developing
for our customers. But many Scrum practitioners have started to do
Deployment and Operations management in their business cycles.

• Financial Measure. Find if the operation is profitable or cost effective –
which in financial terms is the measurement of business success.

• Gauge Competition. How are we doing against competitors or competing

© Mike Beedle, All Rights Reserved Agile Management for the 21st Century

20

with other alternatives in the market.
• Improvement or Corrective Actions. Often product, services or processes

are in constant need of improvements of many kinds.

Examples at the business level of these techniques are Lean Startup, Profit Zone,
Design Thinking, Scenario Planning, Blue Ocean Strategy and Red Ocean Strategy
[LeanStartup], [ProfitZone], [DesignThinking], [ScenarioPlanning], [BlueOcean],
[Porter1], [Porter2], [BusinessModelGeneration].

But other insertions business, technical or domain specific are possible.

Enterprise Scrum is a true process framework, with detailed information
of where to insert techniques.

Improving	 through	 Iteration	 –	 PATTERN	 3	

A common pattern found in very modern business techniques is that of iteration.

For example, Lean Startup management tells us to implement a business idea and
then check and see if it’s working in an iterative way [LeanStartup], [RunningLean].
If it is working, persevere; or else pivot.

But the same is true in Beyond Budgeting where we make adjustments as we get
feedback from the field to long and medium term plans [BeyondBudgeting]. And the
same is true as we iterate to find a working product or service as a Blue Ocean
Strategy [BlueOcean]. And we could equally use them to accomplish a different
business model [BusinessModelGeneration]. These techniques are of course in
agreement with concepts explained in Little Bets [LittleBets].

After an iteration at any one level we could:

Change our business model, or
Change our product, service or process – changing the concept of them, or
Change or add features to an evolving product, service or process, or
Improve our team, process, or customer service.

Based on maximizing what we defined as business value.

Other techniques like Scenario Planning, Profit Patterns, traditional Strategy, or
Kano models come handy to make these decisions.

In Scrum we officially have an iteration called the Sprint, but in Enterprise Scrum we
allow the possibility of nesting this iterations in what we call Improvement Cycles.
We prefer this name to that of “iteration” because iterations say that you are doing
the same. In Enterprise Scrum we don’t want to do the same – we want to
improve!!! And we want to get feedback though Retrospectives at any level so that
we can make any adjustments necessary to improve our products, services,
processes, customer satisfaction and our teams.

© Mike Beedle, All Rights Reserved Agile Management for the 21st Century

21

Figure 11. Change: business models, products, services, features until you find the “sweet spot”.

Another way to say this is: Enterprise Scrum brings professional iterative and
improvement management to any kind of organization, bringing with its all of its
cultural tradeoffs of sharing knowledge, cooperation, collaboration and helping each
other.

Forecasting	 and	 Business	 Value	 –	 PATTERN	 4	

Another important principle in Scrum and Enterprise Scrum is that we plan based on
what business value measured and accomplished – nothing else, plans, budgets,
assumptions.

Pattern: plan based on measured quantities
Once we define what Business Value is for our team, from a business perspective,
there is a need to build expectations (beyond a Sprint) and make forecasts and
projections, so that we can plan for contingencies and thresholds and make business
decisions. For example, a company may decide that if they offer a new financial
compliance management service, it must produce at least 1 million dollar revenue in
a year, or else they may decide to do something else.

This is business-level empirical management, which has always been around at
least informally, and it is best represented by the Lean Startup techniques as of late
[LeanStartup], and which fits other techniques such a Profit Zone [ProfitZone], Blue
Ocean Strategy [BlueOcean], etc. We will also parameterize these techniques to
optimize Business Value in Enterprise Scrum.

In software, we have developed some techniques using empirical management over
the years. See for example Mike Cohn’s “Agile Planning and Estimation” [Cohn2].

And we will borrow some of this wisdom to make projections and forecasts through
calculations when we get to the Improvement Cycles.

Our forecast is based on previously measured business value, and that
re-planning occurs immediately after we measure the business value
that we accomplished in past Improvement Cycles– at any level.

This is more aligned with business needs and concepts like Lean Startup
[LeanStartup] and Profit Zone [ProftZone] as discussed above.

When the Improvement Cycles are nested, we can make predictions at a lower level

© Mike Beedle, All Rights Reserved Agile Management for the 21st Century

22

of scale that feed into other higher levels of scale.

For example, our Monthly Sales Improvement Cycles can feed into Quarterly Sales
Improvement Cycles, that then can feed into Yearly Sales Improvement Cycles.

Enterprise	 Scrum	 Organization	

Enterprise Scrum organizations can have more than one team, and these teams can
cooperate in different ways not just in traditional style of “functional decomposition”
and “command and control” of like traditional organizations.

Let’s try to envision how the “big picture” looks like in Enterprise Scrum in terms of
intelligence and organization. Enterprise Scrum is based on three intelligence
concepts:

1) cooperating intelligent multi-agents (connectionist intelligence) [MultiAgent],
2) the Unity of Purpose (central delegated planning), and
3) the Subsumption Architecture (subsumed behaviors) [Brooks2].

This is an explanation of what companies that use many instances of Scrum are
already doing -- not an invention or wish of mine or of someone else for that matter.

Multi-‐Agent	
Each Scrum Team operates like an intelligent multi-agent inside, powered by the
self-organization of the agents that compose it: Business Owner (Product Owner),
stakeholders, Team and Scrum Master. The Scrum Team self-organizes to create
and update the “master plan” continuously – the Value List (Product Backlog); and
then self-organizes to implement it. But also collections of Scrum Teams can form a
larger intelligent multi-agent that can self-organize as well. However, and depending
on how the Scrum Teams work together, the resulting organization can be either a
Multi-Agent organization – with each Scrum Team having their own value list without
a “master plan” for all teams, a Unity of Purpose organization – with a “master plan”
i.e. a master value list for all Scrum Teams, or a Subsumption-like type organization
where the Scrum Teams themselves can represent subsumed behaviors.

Multi-Agents manage themselves by respecting a series of rules of interaction. That
lead then to emergent behaviors. For example, the basic rules can emerge into
splintering (mitosis-like processes), mentoring, flocking, herding, mimicking, or
swarming in general [Swarm].

	

Unity	 of	 Purpose	
By Unity of Purpose we mean the hierarchical breakdown of high-level goals from
the top. This implies a hierarchy of Scrum Teams working at different knowledge
levels at different levels of structure, each with a Business Owner (Product Owner), a
Value List (product backlog), a Scrum Master, and an implementation Team, which
may be composed of business owners for a lower level of structure and other team
members which may be just stakeholders.

© Mike Beedle, All Rights Reserved Agile Management for the 21st Century

23

For example, upper management desiring a high-level goal, middle management
following by starting a project or program, and program or project implementation
teams implementing the desired goal. The programs and projects can in turn send
feedback back to the parent saying: “we can’t implement this or that”, but leadership
in this type of organizations is assumed to come from the top.

The Unity of Purpose architecture provides an overall plan that breaks down details
as it gets implemented by different organizational layers and allows people to
accomplish a “shared vision” by knowing and focusing on common goals, and finding
synergies among their activities to achieve these goals.

Subsumption	 Architecture	
The subsumption architecture [Brooks1], [Brooks2] is based on the concept that
several prioritized behaviors can create a special kind of intelligence that is very
powerful. It is not based on an overall plan – instead is based on the idea that
different behaviors can subsume each other according to some basic rules of
interaction. Because there are no models, the slogan for the subsumption
architecture is “reality is our model”: there is a high-level goal given by the top-most
prioritized behavior but the plans and models to make plans are replaced by a
subsumption model. This allows a robot to learn and do very difficult tasks like
learning how to walk based on nested feedback loops. And it also allows a company
to go “as fast they can towards their goals” but how to get unstuck from blocks
quickly through subsumed behaviors.

We need to sometimes radically change the source of our leadership
and change our plans because of a finding at a lower level of structure.

In this case, we may “lead” from any level or layer in the organization: upper
management, middle management, program, project or even the technology level.

For example, when research in a pharmaceutical company finds a new discovery
that then is passed to middle management so that upper management can switch
the company direction based on that. Or when middle management is able to
improve a service process through a partnership or logistical improvement and both
upper and implementation teams are asked to modify their behavior and plans
because of that.

Organizational	 Choices	
Scrum Teams have always been a self-organizing Multi-Agent that have some level
of Unity of Purpose through the product backlog but a dose of Subsumption has
been a fundamental underpinning of Scrum even for single teams since its very
invention by Jeff Sutherland in 1993 [Brooks1], [Brooks2].

Enterprise Scrum formalizes, clarifies and better defines the relationships and
communications among the different Scrum instances within the enterprise at
different levels of scale and for different business processes to shift the balance
among Multi-Agent, Unity of Purpose, or Subsumption type organizations.

© Mike Beedle, All Rights Reserved Agile Management for the 21st Century

24

In Enterprise Scrum we manage and adapt by constantly listening and
communicating through formally defined nested feedback loops among Scrum
instances in either: discovery mode, broadcast, multi-cast, or pre-established
messaging dependency mode.

Scrum	 Testing	 Principles	
Umbrella Principle – A larger organization is doing Scrum if the organization as
seen from the outside of the organization is doing Scrum – no matter how large the
organization may be.

This is important in a scaled Scrum implementation because we want to guarantee
that the larger organization is doing Scrum – not just using Scrum for some of its
teams underneath. The only way to pass this test is by doing Unity of Purpose
Scrum.

Isolation Principle (Inverse Umbrella) – We define a part of a larger organization
to be doing Scrum in isolation, if we can prove that the isolated portion is doing
Scrum. You can pass this test with either Unity or Purpose of Subsumption Scrum.

These principles allow us to know what parts of the organizations are doing Scrum
and how do they cooperate with other parts of the organization.

© Mike Beedle, All Rights Reserved Agile Management for the 21st Century

25

2.	 Enterprise	 Scrum	 Definition	

Enterprise Scrum generalizes and parameterizes the basic Scrum structure and
allows extensions so that we can use Scrum for many purposes through configurable
parameters. Through these parameters we can instantiate Scrum into useful
differentiated forms that are generic, more business-like, and scaled.

Think of this definition as the description of a stem cell in a living organism – with all
the cellular proteinomic behaviors, still in a non-differentiated way but with many
possible allowed differentiations. In every section of the definition, we also provide
some guidelines and examples as to “how to differentiate” Enterprise Scrum
instances by using its parameters. It is important to get as good as an instance as
we can of Enterprise Scrum and make sure we don’t violate any Scrum principles
because otherwise we might get a cancerous cell – an incomplete or incorrect
differentiation that may lead to problems.

Scrum is already a process framework; but Enterprise Scrum is a much more
detailed, general and expandable process framework. The Enterprise Scrum
structure at a glance is:

Cultural Values

Scrum values and BA Elements – honesty, courage, sharing knowledge,
cooperation, helping each other, etc.

Value List (was Product Backlog)
Vision – a concise description of what we are trying to accomplish
Value List - formed of prioritized VLIs (Value List Items) to express and
mange a vision, each adding business value, with a DOR (definition of ready)
and a DOD (definition of done), etc.

Reports
ScrumBoard - one for each for a lower-level Improvement Cycle collection
Burndowns – one for each Improvement Cycle
Metrics and Charts – optionally one or more for each Improvement Cycle

Roles
Scrum Team – composed of the Business Owner, Scrum Master and Team.
It could be more than one for scaled up organizations.
Business Owner – owner of the Value List, ROI, success/failure
Scrum Master – same as in Scrum – an Enterprise Scrum coach
Team – as in Scrum, a self-organizing, autonomous, cross functional team

Process
Vision – creation of the initial vision (written or not)
Customization - through Enterprise Scrum parameters
Initial Value List – creating of the initial Value List
Improvement Cycles - nested for each cycle (e.g. Release, Sprint)

Planning – plan how much and business value the team Scrum Team
will attempt and how they plan to accomplish that
Sprint Planning part 1 - Agree with Business Owner what to do
Sprint Planning part 2 - Volunteer for VLIs, create plans for VLIs, and
provide detailed estimates for plans
Execution – work and monitor business value as we achieve it

Collaborating and sharing knowledge,

© Mike Beedle, All Rights Reserved Agile Management for the 21st Century

26

Daily Scrums,
Updating ScrumBoard,
Dependency Matrices and
Updating other metrics and charts

Review – review and account business value
 Review Value Increment
Retrospective – find what we are doing well and how we can improve
Value List Refinement – adjust the vision by managing the Value List

more Improvement Cycles

	

Product	 vs.	 General	 Business	 Skin	

You may have noticed that we have used “more generic names” in Enterprise Scrum
instead of the standard Scrum names. That’s because we are generalizing Scrum to
either different levels of scale or other business processes, where there may not be
any Products, and where the accepted concept of a Sprints as 1-4 week time-box
duration may be insufficient by itself to describe longer-term iterations or nesting.
We hope the Enterprise Scrum names might be easier to understand and related by
workers of different business processes at different levels of scale. However, these
names are just skin-deep – all of the Scrum concepts are the same.

In other words, the world is full of people doing Scrum for things other than “building
products” in 1-4 week iterations, and they need a friendly Scrum definition that is
applicable to any of their situations. So we need to be extremely careful about our
assumptions, the names we use, what is business value and how we can measure it
for different situations.

In fact, think of these names as just “a skin” over the traditional Scrum names:

PRODUCT SKIN BUSINESS SKIN
Scrum Enterprise Scrum
Product Owner Business Owner
Scrum Master Scrum Master
Team Team
Product Backlog Value List
PBI (product backlog item) VLI (value list item)
Sprint Improvement Cycle – nesting allowed

e.g. one week ICs contained in
quarterly ICs contained in 1 yr. ICs.

Daily Scrums Daily Scrums
DOD, DOR DOD, DOR
Scrum Board Scrum Board
Velocity Velocity (measured in varied units – not

only effort estimates) e.g. revenue,
profit, etc.

Product Increment Value Increment or <VLI-type1>
Increment (where VLI-Type1 is the
principal activity)

© Mike Beedle, All Rights Reserved Agile Management for the 21st Century

27

PSP (potentially shippable product) UV (usable value)
Sprint Burndown Burndown
 Metric
 Chart

However, you may also have noticed from the summary above that there are some
additional concepts like “metrics” and “charts”. These are extensions to regular
Scrum that will allow us to measure more than one thing. In Scrum we typically
measure velocity in units of effort. But our velocity in Enterprise Scrum is different: it
can be the regular velocity in terms of effort, or a different metric i.e. like monthly
sales.

Cultural	 Values	

This is one of the most important aspects of Scrum and Enterprise Scrum: the
cultural values. And that’s why we are starting here. The Enterprise Scrum process
executes under the same special culture that Scrum does with the same Scrum
values: Commitment, Courage, Respect, Focus and Openness. And jut like regular
Scrum the Enterprise Scrum culture is based on the BA elements of sharing: Sharing
Knowledge, Collaboration, Cooperation, Asking for Help, and Providing Help to
others.

Without these values and BA elements high-order improvements are not possible in
either Scrum or Enterprise Scrum. We are trying to build a Scrum-based Smart
Tribe [SmartTribes], [TribalLeadership].

Roles	

The Scrum roles don’t change in Enterprise Scrum we can opt to use different
names but we can use the roles at any organizational level and for any business
process.

The	 Scrum	 Team	

The Scrum Team is made up by the Business Owner (Product Owner), the Scrum
Master, and the Team, just like in Scrum. Although many of the interactions among
the Business Owner, Scrum Master and team are defined by meetings and activities,
the Scrum Team itself is cross-functional and self-organizing, just like in Scrum.

scaling	
In Enterprise Scrum, there can be one or more interacting Scrum Teams in different
modes as we discussed in the introduction: unity of purpose, self-organizing,
subsumption, etc.

Business	 Owner	 was	 (Product	 Owner)	

In Scrum, and in Enterprise Scrum the Business Owner (Product Owner) has the

© Mike Beedle, All Rights Reserved Agile Management for the 21st Century

28

same responsibilities:

• provide initial vision with the help of the stakeholders
• create an initial Value List that reflects the vision with the help of the

stakeholders
• prioritize the Value List at all times to deliver more Business Value
• manage and redirect the vision throughout the project or process by

managing the Value List
• the Business Owner is the only person that can modify or add to the Value

List
• Ensuring the Value List is available, transparent and visible to all
• Provide clarifications throughout an Improvement Cycle to the team for the

different VLIs (value list items).
• Approve (or not) the results of an Improvement Cycle

Financial responsibilities:

• owns the ROI (return on investment) of the process, product or service.
• owns and controls the budget of the process, product or service.

In some cases, these financial responsibilities, specially in large companies is
actually owned by a higher up manager. Beware of this situation: the Business
Owner then only owns the vision but is not truly responsible of the success or failure
of the process, product or service.

A Business Owner may be in charge of a company, a product portfolio, an individual
product or service, or even a feature set of business area.

scaling	
In scaled up teams, there might be one or more Business Owners cooperating in
different modes: delegation – where there is a Chief Business Owner and helper
Business Owners delegated to different business areas; single central Business
Owber – where there is a single Business Owner aided by a Business Owner team
of stakeholders; cooperating – where different Business Owners from different
products, services, or business areas work in cooperation.

Experience indicates that it is best to have a full-time Business Owner. However,
experience indicates that if Business Owners have spare cycles they can be can be
Business Owners of up to 3 teams.

Team	

As in Scrum this is a cross-functional, autonomous, self-organizing team that
implements the VLIs (Value List Items) in the Value List within an Improvement
Cycle to achieve a Value Increment conforming with a DOD (definition of done). In
Enterprise Scrum, the Team may be composed of Product Owners working on a
different context. For example, the company management team is composed of the
CEO (Business Owner), with each of executives in his Team are Product Owners of
Product Portfolios, Service Portfolios, Products, Services, or supporting processes

© Mike Beedle, All Rights Reserved Agile Management for the 21st Century

29

(HR, Accounting, Finance, etc.).

. The responsibilities for the team are:

• Execute (implement a Value Increment to a Done definition within an
Improvement Cycle) using a cooperating, cross-functional, self-organizing
team

• Accept (or not) the plans of the Business Owner
• Estimate the VLIs (based on that teams’ previous experience).
• Etc.

These are some Team desirable characteristics:

• Full-Time Teams Members (as many as possible)
• Best people in teams
• Self-selected teams – team hires new members
• Each Team manages its own external dependencies
• Balanced Cross-Functional Teams to fulfill DOD (the Team or Scrum Master

can help re-balance the team if necessary, the Business Owner funds the new
hires) (See parameter scrumTeam.xFunctionalSkillMatrix)

• Autonomous Self-Organizing Teams that can work in subsumption
relationships with other teams within the organization

• Long-lived teams
• Reward Team Performance
• Adequate Sized teams (3-9 team members is the preferred size boundaries)

scaling	
Scaling of Teams is easy: partition the organization is several Scrum Teams that
mirror the different customers served. For example, each platform, product, service
or business area (if large enough).

Scrum	 Master	

In both Scrum and Enterprise Scrum, the primary responsibility of a Scrum Masters
is to be a Scrum coach to the Scrum Team (including the Business Owner and the
Team). The Scrum Master responsibilities are:

• Enterprise Scrum coach for the Scrum Team
• Ensure everyone understands and executes Enterprise Scrum
• Owns the Enterprise Scrum process
• Helps the Business Owner and the Stakeholders to configure Enterprise Scrum
• Helping the Business Owner implementing a better Value List to deliver more

Business Value through better, concise and well-defined VLIs
• Helping the Business Owner and the Team in making “empirical plans”
• Schedule and provide agendas to al Scrum meetings, enforce agendas, and

facilitate all the Scrum meetings
• Remove impediments for the Scrum Team
• Improve the Scrum process in all areas (3 typical areas are: Business Owner

interaction, team collaboration and infrastructure)

© Mike Beedle, All Rights Reserved Agile Management for the 21st Century

30

scaling	
Scrum Masters can coach one or more teams and it is better that Scrum Masters
expand their responsibilities playing the same role; rather than playing other roles.
Experience indicates that the “magic number” is a maximum of 3 teams if the Scrum
Master is experienced and the teams are mature. And only one team is the team is
new to Scrum (or Enterprise Scrum).

	

Process	

The overall Enterprise Scrum process to define a valueList and to accomplish some
work through improvementCycles is identical to the Scrum in principle; but in
addition we must configure the Enterprise Scrum process, and execute the process
with the appropriate parameters – even if we have to adjust them on the go.

Vision	

Just like in Scrum, we don’t require that a vision is written down, but it is a really
good idea to do so. Doing the wrong thing is the biggest risk of any project or
process. There are some good techniques to draw a vision such as the Elevator
Pitch game [GameStorming]. In the Elevator’s Pitch game we ask the following
questions:

• Who is the target customer?
• What is the customer need?
• What is the product, service or process name?
• What is its market category?
• What is its key benefit to the customer?
• Who or what is the competition? Substitutes?
• What is the product, service or process' unique differentiator?

Answering these questions is a good idea even if we don’t write the Elevator Pitch in
the format below. However, we can use these answers to write a single sentence
that includes all of these answers into an Elevator Pitch:

Figure 12. Elevator Pitch game

Configuration	

© Mike Beedle, All Rights Reserved Agile Management for the 21st Century

31

The overall process in Enterprise Scrum is very similar than in regular Scrum but it
requires at least one extra step: customization, because not only do we want to use
the Scrum process, we need to customize it for each business process to make sure
Scrum is applied correctly. We can configure Enterprise Scrum for company
management, marketing, sales, product development, software development, or
even things like BPR (business process redesign, SAP implementations, auditing or
compliance management. It is a good idea to start with a vision and then create an
Initial Value List (Product Backlog), and then start the Improvement Cycles (Sprints)
to accomplish our vision. It is always desirable to update the Value List (Product
Backlog) as necessary.

We don’t have to configure Scrum for every single instance of Scrum, just the first
one for a particular business process. For example, once we configure Scrum for
Real State Sales, we can use that configuration template and reuse it. However, we
must be careful in using templates, and at least review and verify that they properly
apply to a new process instance.

Our goal, in time, is to provide a ready-to-go list of configurations for
different business processes including the values for the parameters to
help any users of Enterprise Scrum customize their processes in an
easier and faster way.

However, this will take some time, and it will evolve with time, of course. Perhaps
we can get the global community of Enterprise Scrum users to contribute to an
Enterprise Scrum configuration’s repository.

The configuration allows us to configure:

• the Scrum Team,
• the Architecture and its management,
• the Business environment,
• the Enterprise Scrum Template we might be using,
• the type of Structure (scaling style),
• the Techniques that we might be using,
• the Value List type and attributes,
• the Value List Instance attributes,
• the Improvement Cycle Type,
• the Improvement Cycle Instance

Here is the list of configurable parameters so that we can customize Scrum for
different purposes. Don’t be intimidated by this list – it is easier than it looks! Take
every parameter and ask the question: what is this for my team? If you are not sure,
give your first answer – you might have to discover or change your mind through
adjustments what best works for you.

list of sub-parameters = {a, b, c, …}
list of valid values = <a, b, c, etc.>
list of a’s = (a)
value of parameter a = [a]

© Mike Beedle, All Rights Reserved Agile Management for the 21st Century

32

Scrum	 Team	 Parameters	

Instance parameters describe an instance of Enterprise Scrum at the highest level,
providing general information about the identity, purpose, origin, and relationships to
other instances.

Parameter. Instance. scrumTeam
scrumTeam – the scrumTeam parameter describes who is on the team,
scrumTeam has several subparameters (the entire list of parameters):

instanceName - instanceName is the name of the Scrum instance. A unique
identifier that defines what the teams does and is well aligned with the Principal VLI-
type below. For example, a Scrum instance for company management can be
called: “Company Management Scrum Team”, “Company Management Process”, or
simply “Company Management”.
scrumTeam.businessOwner – name and contact info of the businessOwner
scrumTeam.stakeHolders – name and contact info for each of the stakeholders
scrumTeam.scrumMaster – the name and contact info of the Scrum Master
scrumTeam.team – list of team members: names, contact info
scrumTeam.xFunctionalSkillMatrix – it is useful to track and inventory the overall
skills of the team. The overall skills needed are typically known but they can change
over time, and therefore, this matrix may be dynamic.

The Vision that created earlier should help us find a good instanceName, to recruit
the right members for our scrumTeam (businessOwner, stakeHolders,
scrumMaster and team), to better define or understand our businessCycleType,
and most importantly to define what businessValue is.

Because Enterprise Scrum teams can be composed of multiple Scrum Teams, the
team members at one level can be – but don’t have to be, Business Owners for a
lower level team. We will see that Scrum instances are related through other
parameters as well like Structure Parameters, and the attributes of the
valueListItem.

Architecture	 parameters	

architectureType – this parameter describes the type of architecture or the team is
working on. This reflects which concepts we work on and what relationships may
have. The architecture is related to the domain and the instanceName, but here
we describe the kind of abstractions that we deal in that domain from the perspective
of what we are building: a system, a building, a business, etc. So the for example,
the architecture can be: <“business architecture”, “system architecture”, “product
architecture”, etc.>

architectureManagementType – this parameter describes how we evolve the
architecture: <self-organizing, Agile Architect, Traditional Architect, External
Architecture Team, etc.> Some of these options are more “agile” than others of
course. In doing Scrum, we much prefer that the architecture is managed by the
entire team.

© Mike Beedle, All Rights Reserved Agile Management for the 21st Century

33

architect – this coud be “none” or he name of a person that matches the
architecturalManagementType above. In doing Scrum we much prefer to do self-
organizing architectural management but sometimes that is not possible.

Business	 parameters	

domain – this parameter describes the domain in which the Scrum team works. For
example, insurance, financial transactions, DNA research, audit, compliance, rocket
development, etc.
Parameter. Instance. businessCycleType
businessCycleType -- Development, Customization, Deployment, Business
Growth, Business Management i.e. Operations, Revenue Cycle, Phase out, etc.

Sometimes is useful to know what is the high-level purpose of our Improvement
Cycles because this might tell us more about what to expect from our Scrum
instance.

Parameter. Instance. businessValue
businessValue - this parameter describes what is business value for our Scrum
instance, businessValue has three subparameters:

description – Scrum is a system to deliver the most business value in the shortest
amount of time. Therefore, knowing what business value means to you is one of the
most important things when using Scrum. This parameter defines what business
value is for our Scrum instance and gives a list of variables to be optimized.
optimizationVariables – the list of business variables to optimize together.
optimizationGoals – describe what type or range of equilibriums we want to
achieve

For example, we could be optimizing future sales of a commercial software product;
therefore, business value, would be ROI impact of that feature, and we could also
include competitive advantage, advancing the state of art, learning something, etc.
This maps well to business value in Scrum.

However, in Enterprise Scrum it could be more complex than that. Business Value
could be a balance or compromise of two variables like profit and quality.

The definition of “true business value” i.e. businessValue is very important to
determine and configure a template we want to use to create our initial Value List, if
the correct template is available. (See template parameters below.)

The optimizationGoals can link to a technique or a techniqueList, to optimize our
businessValue. A technique tells us exactly how to complement Scrum to optimize
businessValue or some other helpful thing through the subparameters: name,
purpose, processStep, howItIsUsed, interfaces, mappings, references in the
technique.

© Mike Beedle, All Rights Reserved Agile Management for the 21st Century

34

Template	 parameters	
Parameter. Business Process. template
template – this parameter describes the template if any that we are using. If we are
not using a template, this field should be blank or say “none”, template has three
subparameters:

name – the name of the template we are using
templateType – can be fromProcessTemplate, fromValueListTemplate, or from
improvementCycleTemplate

fromProcessTemplate Specify which Enterprise Scrum Process Template was
used, or leave it blank. By convention, the template values would be used but a
highlight is used to indicate changes in the values of the parameters.

For example, templates for a specific type of Software Development, or for Company
Management, or for Cancer Research may be available.

A database of such templates will be available in the future through participating
Enterprise Scrum practitioners.

fromValueListTemplate Specify which Scrum Instance Value List template was
used, or leave it blank.

For example, Value Lists to do specific PeopleSoft, Oracle Financials or SAP
installations may be available. This is typically done at the project or process level.
These templates are called Enterprise Scrum Project/Process Template.

fromImprovementCycleTemplate Specify the Improvement Cycle template used or
leave it blank. This is typically used for Scrum management with almost identical
Improvement Cycles like Sales Management, or Compliance Management, where
there might not be much new in the Improvement Cycle Value List, but of course it is
still important to collaborate, share knowledge and improve.

Structure	 Parameters	

These parameters tell us how our Scrum instance is linked to other Scrum instances.
We may have some information about this, most dependencies mapped or none at
all. However, since Enterprise Scrum is about making Scrum generic, business-like
and scalable; these parameters build Scrum into larger organizations by connecting
multiple Scrum instances.

Parameter. Structure. parent
parent -- name of the Scrum instance that is the parent, or higher level management
for the process.

This indicates that there are one or more VLIs in the Value List for this team that
have been delegated by a higher-level team. In other words, there are VLIs that

© Mike Beedle, All Rights Reserved Agile Management for the 21st Century

35

have a parentVLI. See VLI attributes in valueListItem.

For example, in a product development company, the Portfolio Management Scrum
Team oversees all of the products, or even product divisions in the company, so the
Portfolio Management Scrum Team is the parent of each of the products, or product
divisions.

Typically, a parent aggregates a common metric from the children. For example, in
software development, we typically aggregate the velocity of individual but
cooperating teams into a large-scale software development effort, as a “Global
Velocity”. Or in sales, we aggregate in the parent the combined sales of
independent teams, products, or services.

Parameter. Structure. contributors
contributors -- names of the Scrum Team instances that contribute to this team’s
work accomplishment. Notice the difference with team

The contributors parameter is a list of all of the Scrum instances that do work for a
parent. This means that one or more of our VLIs are the parentVLI for VLIs in other
(contributor) teams.

The contributors typically have a common metric, so that the parent can aggregate
it. For example, individual sales teams can have a Revenue or Profit metric that can
be aggregated by the parent so that the parent can report on overall performance.

Parameter. Structure. dependsOn
dependsOn – this is the list of all organization we depend on.

Parameter. Structure. dependOnUs
dependOnUs – this is the list of all organization that depend on us

This means that there are one or more VLIs in our team that are dependent on other
VLIs from other teams or one or more of their VLIs are dependent on us. We can
keep track of these dependencies through the dependsOnVLIs parameter in the
valueListItem parameter. See Value List parameters.

In some cases, these dependencies can be almost static or can change on a daily
basis. For example, advertising agencies sometimes produce websites that always
depend on compliance and marketing approval, and where these interactions are
well-established.

However, in large-scale software development, the relationships of the development
teams can vary rapidly – some times daily. Seee also the dependsOnVLIs
parameter in the Value List valueListItem parameter.

It is useful to use a dependency matrix to track these dependencies – specially if
they are vary rapidly.

 Team 1 Team 2 Team 3 Team 4

© Mike Beedle, All Rights Reserved Agile Management for the 21st Century

36

Team 1 N/A X X
Team 2 X N/A
Team 3 X N/A
Team 4 X N/A

In Enterprise Scrum we can accomplish the work with one or more teams. When we
start a project it is easier to start with one team and then add more teams as needed.
However, once you master scaling, it is possible to start with multiple teams at once
but it is not the recommended way to get started.

A parent Scrum Team can add one or more Scrum Team as contributors. It is also
convenient to keep track of which teams we dependsOn – the list of teams we
depend on, and who dependsOnUs – a list to track which teams depend on us.
These relationships can be almost static or change rapidly in time, it really depends
on what we are doing.

Recall from the introduction that our number one organizational pattern is the Scrum
Team.

Scrum	 Team	 	
Pattern: Scrum Team
We typically form new helper Scrum Teams around business areas because then
there is a one-to-one correspondence among:

Customer option ->

Business Area ->
 VLI-type ->

Subsystem (if it a by product exists) ->
Scrum Team

For example, in a benefits management system we would strongly suggest forming
teams for Pension, Defined Contribution (401K), and Health and Welfare plans. It
also work on other domains, for example, real state sales can be split in Retail,
Mansion, Vacation or Commercial. Larman and Vodde call these “feature teams” – a
good name for software or product development [LeSS1], [LeSS2].

Be aware that these relationships may change over time, so we could rearrange the
team’s structure as needed.

Add	 a	 parent	 Scrum	 Team	
Pattern: Add a Head (Add a Parent)
Suppose that the opposite happened teams were added as needed to offer more
services to the customer but now no controls the overall picture. When this is the
case, it is a good idea to add a parent Scrum Team to coordinate the “face to the
customer”. The Business Owners of each of the Scrum Teams may form
themselves a parent Scrum Team that has a constrained autonomy since it
depends on its contributors.

© Mike Beedle, All Rights Reserved Agile Management for the 21st Century

37

Unity	 of	 Purpose	
Pattern: Unity of Purpose
The relationship of parent to contributors may vary. In some cases is more
delegation: contributors work for the parent with feedback from the trenches as to
why they can do but trying to achieve a “grand vision” from a Chief Product Owner.
This is needed sometimes in some environments but there are other options.

Subsumption	
Pattern: Subsumption
It is also possible to operate through a set of subsumed behaviors: the contributors
just contribute to the success of the parent’s main behavior, choosing the best
behavior among the Scrum Teams through a defined set of behaviors that subsume
each other. The parent may give a direction to the contributors but then as the
contributors teams find market information, they may send direction (information),
that affects the parents overall direction.

Multi-‐Agent	
Pattern: Multi-Agent
It is also possible to have a softer cooperating self-organizing relationship: the
contributors just contribute to their success self-organizing to achieve their
individual goals, and resolving conflicts and dependencies as needed with other
Scrum Teams – there is no parent or there is only a very high-level parent. Every
team leads itself communicating, co-adapting and flocking with other teams.

As a general rule is that the contributors, should operate as autonomously as
possible. This is a critical pattern in Scrum-managed organizations: direction or new
information may come from any other layer, and therefore the entire organization
needs to quickly adapt to this new direction generated by the new information.

Techniques	 Parameters	

These parameters tell us about what techniques we are inserting into the Scrum
framework to specialize our Scrum instances for whatever purposes we need.

Parameter. Techniques. technique
technique - technique describes a technique that has been inserted into our
Enterprise Scrum instance to help us in a particular way. The subparameters to
describe our technique is:

name – describes what the technique does
purpose – what purpose does the technique have
processStep – the exact process step where the technique is introduced
howItIsUsed – a description of how the technique is used in our Scrum instance
interfaces - what inputs do the technique need from Scrum, what outputs to Scrum
does it produce
mappingsToScrum –and how exactly the outcomes are mapped to Scrum and its
artifacts, for example, the Value List
references – provides where we can find more information about it

© Mike Beedle, All Rights Reserved Agile Management for the 21st Century

38

For example, we may introduce a Blue Ocean strategy’s Strategy Canvas as
business technique to help us find a better company, portfolio or product direction.
Let’s assume that is a product.

Therefore our Strategy Canvas technique is configured:

name – Strategy Canvas
purpose – identify strategic factor values so that we can better create and prioritize
our Value List in order to position our product in a unique niche
processStep – the technique should be used before the creation of Value Lists –
both initially and after every Refinement
howItIsUsed – the product factors are initially analyzed and then re-analyzed at the
beginning or every Refinement so that we can create a better Value List
interfaces – the Value List can be used as input to create the current state of the
Strategy Canvas. After analysis is market, competitors, suppliers, and other factors;
modifications can be made to the Strategy Canvas, and its output can feed into the
Value List.
mappingsToScrum –the outcome of the Strategy Canvas helps us as high level
guidance for the creation or modification (reprioritization) or our Value List. Typically
a Strategy Canvas factor maps into multiple Value List items (VLIs).
references – Blue Ocean Strategy books, websites, internal documents, previous
analysis documents, etc.

Other techniques from Lean Startup, Profit Zone, Design Thinking, Scenario
Planning, Blue Ocean Strategy, Red Ocean Strategy can be inserted that way as
well.

Parameter. Techniques. techniqueList
techniqueList -- techniqueList is simply a list of all the techniques used within our
Scrum instance.

Value	 List	 Parameters	

The Value List (or Backlog), is formed by a list of VLIs (value list items or PBIs,
product backlog items). Each VLI (PBI), is supposed to add a granule or quantum of
business value by definition, or have another VLI require a particular VLI to add
business value.

Parameter. Value List. principalVLIType
principalVLIType == [VLI-type 1]

For example, the dominant VLIs for RS sales are: Real-State property sales,
because this is our principal activity in Real-State sales. In software development,
the principal type of work is the deployment of functional requirements, because
that’s how we primarily deliver Business Value to our users. We should at least
know what is our principal activity, but sometimes is fuzzier, so we may want to get
the values for all the VLI types before (the next parameter in the list).

© Mike Beedle, All Rights Reserved Agile Management for the 21st Century

39

Parameter. Value List. VLITypes
VLITypes – VLITypes is the list of VLI types that the Scrum instance supports

These are the different types of work that we are planning to do with our instance of
Scrum through Improvement Cycles and deliver them as Business Value. For
example, in an instance for software development, we could do infrastructure VLIs,
architecture components VLIs, implementation of functional requirements VLIs, etc.

Enterprise Scrum can handle any type of mix of work, but we prefer to concentrate
on a specific kind of work. We usually refer to this as the “color mix”, or “colorization”
of the Value List (Backlog) i.e. the types of allowed VLIs.

Examples of VLIs:

Business Process VLIs
Software Development Software Requirements, Infrastructure

(Testing, Integration, etc.), Technical
Components.

Hardware Development Hardware Features, Acquisition,
Infrastructure (Testing, Integration),
functional requirements

Compliance Management Deployed Business Processes with new
Compliance Standards, Compliance
Documents, Policies and Procedures,
Internal Control definitions, Board-level
reports, etc.

Sales Net Profits of: Properties, Automobiles,
retail goods, etc., Partnerships, etc.

Strategy Strategic Key Initiatives, implementation
Customer Service Customer Service Standards, customer

service processes, customer satisfaction,
etc.

 Etc.

Parameter. Value List Item (type). prioritizable.
prioritizable Yes or No.

There are some situations where the Value List may not be possible or desirable to
prioritize in terms of business value. For example, in a sales process, some real
state properties may not have a higher priority than some other ones, or we may
choose not to give them a priority. The same is true for a new car sales process or
to a customer service process.

© Mike Beedle, All Rights Reserved Agile Management for the 21st Century

40

Parameter. Value List Item (type). orderingTechnique.
orderingTechnique - Name and description of the technique that we use to order
by priority our Value List.

In Scrum the default prioritization technique is a comparison in the relative Business
Value to be delivered by each PBI.

However, in Enterprise Scrum we have specified what business value is and the
variables to optimize in our Scrum instance. Therefore, these orderingTechnique
tells us exactly how to use this variables in our Value List to order by priority.

Parameter. Value List Item (type). sizingUnit
sizing unit - specify what units to use to size

For example, a Sales process may size its backlog by revenue or profit not by effort.

Parameter. Value List Item (type). sizeUncertainty.
size uncertainty == estimated average percentage of uncertainly in a VLI type.

Every VLI is uncertain but some VLIs are more uncertain than others. If we can
determine where most uncertainty concentrates among our VLIs, we can plan more
carefully.

For example, in research and development, if we chose “effort” in some unit of time
as our sizing unit, we may determine that our effort estimates could have a standard
deviation of 100%. Ideally, we would measure this uncertainty from previous
experience, but this uncertainty could be estimated. In the case where we really
don’t have any idea of the uncertainty to be expected we could leave this value as
UNDETERMINED, and then measure the uncertainty later as work is performed.

Parameter. VLI Item (Type). dependentVLIs
dependentVLIs - Yes or No

Value List Items are sometimes dependent on each other. Therefore we must
specify if the components are dependent or independent for each VLI or VLI type.

For example, if we are monitoring internal controls and each control represents a
VLI, the controls are typically independent from each other. In hardware
development, there are typically many dependencies among components, but some
components do not interact with each other.

The Daily Scrums are still very useful even when we have independent VLIs,
because team members can still help each other, collaborating, picking up work from
other team members, and exchanging knowledge and experience.

Parameter. Value List type. DOR

© Mike Beedle, All Rights Reserved Agile Management for the 21st Century

41

DOR - this is the DOR standard for a VLI type.

We should provide a DOR for every VLI type if possible, because this determines a
standard by which all VLIs of that type are ready to be worked on.

Parameter. Value List type. DOD
DOD - list is the DOD standard for a VLI type.

Each VLI type should have a DOD if possible because this determines the standard
by which all VLIs of that type are done.

Sometimes, we can assign DODs to VLI types. This is useful. But we need to be
careful – each VLI must satisfy its own DOD which may have to be unique.

Parameter. VLI (type). VLIsToDeliverableMap.
VLIsToDeliverableMap -- define what type of components will the VLI types may
result into.

To be clear, we make a distinction between the goal – VLIs, and the thing that was
delivered to fulfill the goal Increment Component(s).

For example, in software development our goal is to develop a feature for a user; but
we deliver an Increment Component – the software component of the Increment that
fulfills that goal. Therefore, the Deliverable Map is a table that maps the functional
requirement VLIs to the components in the Product Increment that deliver these
requirements.

In software development, we are so used to deliver either a Product Increment, or a
set of components that sometimes we forget this mapping could be important.

Let’s give another example -- a financial company that needs to be compliant with
the Investment Company’s Act. Its goals for a Compliance Improvement Cycle, may
be to be compliant with some or all of the appropriate SEC’s statues in the
Investment Company Act.

As part of this goal, it writes policies and procedures, defines and executes internal
controls to prove that it is compliant with the policies and procedures, and provides
activity, testing and other compliance reports.

The VLI is: Monthly Compliance with the SEC Investment Company Act Iteration
The Increment Components to achieve this goal together with its acceptance criteria
are:

• the compliant processes in the organization as measured by the set of
internal controls, which represent its acceptance criteria

• each of the internal controls with its acceptance criteria
• the internal document titled “Investment Company Act Policies and

Procedures” that outlines the compliance policies and procedures to be
enacted by the operations’ processes, which map to the internal controls

© Mike Beedle, All Rights Reserved Agile Management for the 21st Century

42

described above. The acceptance criteria of the internal documents is that
they allow the organization to be compliant with the Investment Company Act.

• the Internal Controls Monthly report, with the acceptance criteria of having
passed a certain percentage or list of mandatory regulatory controls.

• etc.

Value	 List	 Instance	 Parameters	

Parameter. Value List Item (Type). valueList(valueListItem)
valueList(valueListItem) -- list of all VLIs

In Scrum this is called the Product Backlog but because we build products, but in
Enterprise Scrum we are interested in delivering the most business value as
possible.

Parameter. Value List Item (Type). valueListItem.
valueListItem -- defines a value list item – a granule or quantum of business value.
It can be a direct contribution or an indirect contribution of business value e.g. an
integration server to be able to deliver functions in software development, or
software to support a sales process, etc.

The valueListItem has a mandatory list of VLI attributes as well as optional ones:
name – name of the VLI
description – description of the VLI
priority – priority of the VLI (typically a number 1-N) if it is prioritizable
size – size of the VLI in the sizingUnits chosen
DOR – definition of ready. It may be inherited for each VLI from the VLIType
It’s a list that we call entryCriteria (to match the DOD “acceptance criteria”).
DOD – definition of done for the VLI. It may be inherited from VLItype
We call the elements of this list acceptanceCriteria.

Notice, this is a “definition of done”, not of “partially done”. The different condition
within a DOD must specify when there is “nothing else left to do”.

In strategy, the definition of done for a VLI that has the description “Working with a
partner in China”, may have a DOD that includes:

• Signing the partnership contract
• Having at least 3 customers through that partner in China by end of Q1 2014

That is, when we have achieved these things, an only then, we would consider our
VLI “done”.
planForVLI -- a plan for VLI or a VLI type. A plan can be a list of tasks, a list of
components, a list of sub-goals, workflow or state machine, typically annotated with
owners, and may include an estimated time to completion or effort (or date to be
finished). The plan needs to satisfy the DOD for the particular Scrum instance.
parentVLI – the parent VLI if there is one
dependsOnVLIs – the list of dependent VLIs if there are any
selectable – yes, if the VLI is selectable into an improvement cycle, no otherwise

© Mike Beedle, All Rights Reserved Agile Management for the 21st Century

43

volunteers – the list of volunteers for a VLI
Created by,
Added in Date,
Budget,
Revenue,
Profit,
Etc.

However, in Enterprise Scrum, because we typically do work with multiple teams,
need the parentVLI parameter, so that larger scale VLIs can be traced to lower level
VLIs and vice-versa. When there is one or more VLIs that have a common
parentVLI, we summarize that in our instance of Scrum saying it is the parent – see
above in Structure Parameters.

Additionally, it can prove useful, to have a list of VLIs that each of the VLIs depend
on, if this list is more or less static. However, if these relationships change fast, it
could be hard to track them. When there is one of more VLIs in our Scrum instance
that depends on the VLIs from another Scrum instance, we say that our Scrum
instance dependsOnVLIs that instance. See above in Structure Parameters.

Other attributes can provide different metrics that may make sense in our situation.
We will describe and give examples of these metrics later when we talk about
Improvement Cycles (Sprints). Some of those metrics may define alternate
velocities. For example, they may define target profits in a sales process per
Improvement Cycle, etc.

Improvement	 Cycle	 Parameters	

Parameter. Improvement Cycle. listOfImprovementCycles
listOfImprovementCycles -- specify the list of improvement cycles.

A Scrum Team can have one of more Improvement Cycles. For example, a
development team may have 3 Improvement Cycles:

2 week Development Improvement Cycles
3 months Release Improvement Cycles (6 Development Improvement Cycles)
1 year Business Validation Improvement Cycles (4 Release Improvement Cycles, 24
Development Improvement Cycles and some time off)

It is a good idea that all the contributors of a Scrum Team automatically inherit all of
their Improvement Cycles of the parent.

Parameter. Improvement Cycle. improvementCycle
improvementCycle – defines an improvement cycle type: how we are planning,
accomplishing, measuring, and what kind of work we are improving.

The subparameters of an Improvement Cycle are:
name,
level,

© Mike Beedle, All Rights Reserved Agile Management for the 21st Century

44

length,
metrics (metric(name, description, unit, frequency}),
charts(metricChart {name, description, metric, type}),
scrumBoard,
dependencyMatrix,
valueIncrementName,
usableValue,
calculations (calculation {description, formula})

For each of the Improvement Cycles listed above we need the following parameters:

name -- This is the name for our improvement cycle. We typically use the name of
our Work Type == <VLI-type 1> and a frequency. For example, “Weekly Sales
Improvement Cycle”.

length – it is the length of the Improvement Cycle. First layer Improvement Cycles
typically are 1-4 weeks of duration. Second layer vary from 1 month through a year.
Third layer are typically at least six month long and are the business validation level.

metrics -- list of metrics to be used in the Improvement Cycle.

In regular Scrum we typically just have one metric velocity, always measured in units
of effort, so that what we tend to optimize: velocity. However, in Enterprise Scrum
we are allowed to have multiple metrics or measurements. It is convenient to know
all the metrics that we are using so that we can balance the optimization of our
Improvement Cycle accordingly.

For each metric we need to define a metric.

metric(name, description, unit, frequency) - define a generalized measurement to
track progress or status in an Improvement Cycle. Typically an
optimizationVariable is used in a cumulative or non-cumulative way, either as
either growing towards a goal, or as the “left to the goal”.

It is important to choose relevant business-value like metrics that are important to the
customer – not just arbitrary things that are convenient to measure. For example, in
a sales process, rather than measuring an internally important measurement such as
“effort per sales”, it is better to measure “customer satisfaction”.

This allows Enterprise Scrum to define one or more useful metrics, as opposed to
just have the canonical “velocity” measured in units of effort. Metrics have the
purpose to measure how close we are to our goals.

For example, some metrics could be revenue, profit or customer satisfaction in an
Improvement Cycle.

Each metric has the following attributes:

name – the name of the metric. For example, “net profit”

© Mike Beedle, All Rights Reserved Agile Management for the 21st Century

45

description – tells us what it measures and how to measure it
unit – it tells us the units we are using to measure the metric
frequency – suggested frequency of measurement

charts – this is just the list of charts for the Improvement Cycle

metricChart (name, description, metric, type) – this parameter defines a chart
where the metric is used.

The attributes of a chart are:

name – this is the name of the chart
description – it tells you what it is and how to build it
metric – it tells us what metric to use (see description above)
type – burnup, burndown, other

Typically, we graph the metrics on the Y-axis and time on the X-axis. The resulting
graphs can be both burndowns or burnups, or just a graph of the metrics like
“average daily customer satisfaction” when customers are taking surveys after a
service appointment, for example.

scrumBoard -- specify which type of Scrum Board we will use to manage the
Improvement Cycle workflow

Having a DOD (definition of done) allows us to workflow our VLIs across the Scrum
Board in the same way that we do in Scrum:

• Not selected – VLIs that have not been selected into an Improvement Cycle.
• Selected – VLIs have been selected into an Improvement Cycle. In the case

VLIs are not selectable, all VLIs are assumed to be selected (see the
Selectable parameter below), or in WIP if there is some work done on them
already.

• WIP (work in progress), for VLIs that have been selected for this Improvement
Cycle and that some work has been done on them. The WIP column can be
furthered customized to match a specific workflow, or leave it as “free flow”
until the DOD is achieved.

• DONE – for VLIs that satisfy the DOD – hopefully with nothing else left to be
done and the product owner, or someone delegated from the product owner
has approved of the VLI.

This is the same workflow as defined with Scrum but just with a couple of variations
as to what can be given order or priority, what VLIs can be selectable, and
respective DOR and DODs.

dependencyMatrix – is a chart to map dependencies for an improvement cycle of
either VLIs, persona or teams. This defines the format to be used by the
Improvement Cycle instances.

valueIncrementName – This is the name of our increment. We typically call the

© Mike Beedle, All Rights Reserved Agile Management for the 21st Century

46

“VLI-type1 Increment”. For example, “Profit Increment” or “Sales Increment” or
“Product Increment”, etc.

usableValue -- define what is usable value.

In regular Scrum this Business Value comes as Product Increment that has the
quality to be Potentially Shippable Product. Potentially Shippable Product means
that this is a product that has nothing left to be done to be shipped. However, when
doing Enterprise Scrum to manage other business processes we may not
necessarily be “shipping a product”. Moreover, this is only “potential value”.

In Enterprise Scrum, we are more interested in tracking the usableValue if possible
– not the “potential value”.	
	
calculation (description, formula) – a calculation is a derived quantity that is
useful to know for an Improvement Cycle	

calculations (calculation) – calculation is the list of calculations that are useful for
an Improvement Cycle. For example, budget, schedule, customer satisfaction,
compliance level, etc.

Improvement	 Cycle	 Instance	 Parameters	

Parameter. Improvement Cycle Instances.
improvementCycleInstances(improvementCycleInstance)
improvmeentCycleInstances – this is the list of Improvement Cycle Instances
saved with all of their data

Parameter. Improvement Cycle. improvementCycleInstance

For each instance of an Improvement Cycle we capture the following information:

improvementCycleInstance (
icID,
initialValueListForImprovementCycle(VLI),
doneValueListForImprovementCycle(VLI))
retrospective(well, improvements),
metricInstances (metrics),
chartInstances (chartInstance),
calculationInstances,
scrumBoardInstance,
dependencyMatrixInstance,

icID – this are the name or value identifying a particular Improvement Cycle. For
example, “Sprint 23, Release 2.1” in a software development.
initialValueListForImprovementCycle(VLI) – this is the initial valueList
doneValueListForImprovementCycle(VLI) – this is the valueList that got done

© Mike Beedle, All Rights Reserved Agile Management for the 21st Century

47

(passed the DOD and was approved by the Business Owner).
retrospective(well, improvements) – this captures the results of the retrospective.
It is desirable to bring these results to the next retrospective as a starting point.
metricInstances(metrics) – these are the instances of metrics generated with a
particular frequency
chartInstances (chartInstance) – these are the charts for that particular
Improvement Cycle instance
calculationsInstances – this is the list of calculations for the Improvement Cycle
ScrumBoardInstance - this is the instance of the ScrumBoard used
dependencyMatrixInstance – this is the ongoing dependency matrix tracking
internal and external dependencies

© Mike Beedle, All Rights Reserved Agile Management for the 21st Century

48

list of sub-parameters = {a, b, c, …}
list of valid values = <a, b, c, etc.>
list of a’s = (a)
value of parameter a = [a]

ALL	 Parameters	 short	 list	

Scrum Team Parameters
scrumTeam {instanceName, businessOwner, stakeHolders, scrumMaster,
team, scrumTeam.xFunctionalSkillMatrix}

Architecture Parameters
architectureType
architectureManagementType
architect

Business Parameters
domain
businessCycleType
businessValue {description, optimizationVariables, optimizationGoals}

Template Parameters
template {name, type=<fromProcessTemplate, fromValueListTemplate,
fromImprovementCycleTemplate>}

Structure Parameters
parent
contributors(instanceName)
dependsOn
dependOnUs

Techniques Parameters
technique {name, purpose, processStep, howItIsUsed, interfaces, mappings,
references}
techniqueList(technique)

Value List Parameters
principalVLIType = [VLI-type1]
VLItypes (VLItype)
prioritizable
orderingTechnique
sizingUnit
sizeUncertainty
dependentVLIs
DOR (entryCriteria)
DOD (acceptanceCriteria)
VLIsToDeliverableMap

Value List Instance Parameters
valueList(valueListItem)

© Mike Beedle, All Rights Reserved Agile Management for the 21st Century

49

valueListItem {name, description, priority, size, DOR, DOD, planForVLI,
parentVLI, dependsOnVLIs, selectable, volunteers, Created by, Added in Date,
Budget, Revenue, Profit, Etc.}

Improvement Cycle Parameters
listOfImprovementCycles(improvementCycle)
improvementCycle {name, level, length, metrics(metric{name, description,
unit, frequency}), charts(metricChart {name, description, metric, type}),
scrumBoard, dependencyMatrix, valueIncrementName, usableValue,
calculations(calculation {description, formula})}
improvementCycleInstaces(improvementCycleInstance)

Improvement Cycle Instance Parameters
improvementCycleInstances(improvementCycleInstance)

improvementCycleInstance (
icID,
initialValueListForImprovementCycle(valueListItem),
doneValueListForImprovementCycle(valueListItem),
retrospective(well, improvements),
metricInstances,
chartInstances,
calculationsInstances
scrumBoardInstance,
dependencyMatrixInstance
)

Initial	 Value	 List	

In Enterprise Scrum we prefer to use the name Value List at every level of scale or
for different business processes, because the name “Product Backlog” in Scrum
doesn’t reflect well situations when we are not working on products.

Enterprise Scrum is a generic management framework based on Scrum.
Our goal is to produce business value – of any kind, not just business
value from “products”.

However, just like we do in Scrum, we always try work on things that deliver most
business value first. We defined what businessValue is for our scrumInstance in
the configuration and what type of activity it is through the businessCycleType.
In Enterprise Scrum we use the valueList to keep the list of valueListItems.
(compare to Product Backlog items). As in Scrum, this is a list of items to deliver
granular businessValue through each VLI. In Scrum it was required that the
Product Backlog items were defined, prioritized (ordered by business value) and
sized (in effort to certain DOD (Definition of Done)) before we could do any work.
And it was implied from these requirements a default DOR (Definition of Ready): to
be at least defined, ordered by priority and sized (in effort).

© Mike Beedle, All Rights Reserved Agile Management for the 21st Century

50

In Enterprise Scrum we need to be much more generic than that because we can
use Scrum to manage any business process.

Template	 Parameters	

One possibility is that we could be using an Enterprise Scrum template defined
before. Templates can come in three flavors:

1) templates for processes (Sales, etc.): fromProcessTemplate
2) templates for projects or other Value Lists: fromValueListTemplate, or
3) templates for Improvement Cycles: fromImprovementCycleTemplate.

It is assumed that these templates are somewhat repeatable choices but not
necessarily identical: we can take a template and then add or change it to fit our
needs. For example, at New Governance Inc., we have used value list templates to
install our compliance management software for different clients. And we have
heard of others doing that for SAP or Peoplesoft installations.

New	 Project,	 Process,	 Product	 or	 Service	

However, we can also create the valueList for a brand new process/project with its
own parameters for the first time. Ideally, we would have configured these
parameters correctly to begin with, but we are also allowed to modify the parameters
as we find more information about the process/project. Think of the initial
parameters defined in the configuration just as a starting point that can change as
we find more about what we really want to do or even if the nature of the process
changes. In other words, we follow the same agile iterative ideas and concepts to
configure Enterprise Scrum:

we discover the nature of your process and create or change
configurations as you go, testing that they work along the way.

The principalVLIType tells us the main purpose of our project or process. For
example, it could be Sales or Compliance Management, or functions of a software
system, like User Stories [Cohn1]. The VLI-types tell us about all the different types
of work that we can do. For example, it could include setting up infrastructure for
software development projects, or compliance management, or company
management, etc.

Sometimes the Value list can be prioritized but sometimes it is not. We would know
this from the prioritizable parameter. But to order the list by priority, we have to
state specifically what is the orderingTechnique to be used.

In order to provide a size, we must first decide what is our sizingUnit. Remember in
Enterprise Scrum we don’t have to size by effort, we could size by many other
metrics: revenue, profit, customer satisfaction (accumulated), number of controls,
features, effort (in some time or relative unit), etc. Since this parameter is our main
sizing unit, this parameter will also determine how we are going to measure velocity.
Later, we will see that we will be able to have multiple metrics; therefore, it is

© Mike Beedle, All Rights Reserved Agile Management for the 21st Century

51

possible that we may have multiple “velocities” or measurements, and that we may
choose to optimize one of them, or seek a balance among them. For example, in a
sales process, we may monitor both profit and customer satisfaction, and optimize
for a desired combined level of profit and customer satisfaction.

It is nice to have some idea about the sizeUncertainty, but for new projects or new
project types in an organization it may be impossible to know this value.

Typically, we also have a very good idea whether the VLIs are dependent or
independent. We used the dependentVLIs parameter to note that. This will
determine the nature of our Daily Scrums because if they are dependent, we have to
monitor the dependencies. If they are not dependent, the Daily Scrums will serve
more as an interchange for knowledge, collaboration and shifting responsibilities.

Every Enterprise Scrum Value List item (or type) needs to have a DOR (definition of
ready), and a DOD (a definition of done). The DOR tells us when we can start working
on a VLI. And the DOD tells us when we are done – what are all the conditions to call
something done.

Even though the DOD tells us when we are “done”, sometimes is nice to have a map
that explicitly tells us what we should expect to come out exactly from a VLI. We call
this map the VLIsToDeliverableMap. For example, in compliance management, we
may choose to have a VLI as showing that a control has passed the test(s) to be
valid, but there might be a document, a spreadsheet, or database entries reflecting
this – it tells us about the exact format that we expect the VLI to be delivered, not
only the conditions that it needs to pass to be done; although the DOD may very well
refer to these deliverables.

Because Enterprise Scrum is a generic management process, we may need
attributes or other metrics in a valueListItem to track progress. The valueListItem
attributes could be things like estimated cost, board approval, etc.; or metrics like
quality level, revenue, profit, etc. Each VLI should always have:

name – name of the VLI
description – description of the VLI
priority – priority of the VLI (typically a number 1-N) if it is prioritizable
size – size of the VLI in the sizingUnits chosen
DOR – definition of ready. It may be inherited for each VLI from the VLIType
It’s a list that we call entryCriteria (to match the DOD “acceptance criteria”).
DOD – definition of done for the VLI. It may be inherited from VLItype
We call the elements of this list acceptanceCriteria.

Also, because we expect to connect several Scrum instances in either delegating or
cooperating modes, the valueListItem should always include the parentVLI and
dependsOnVLIs parameters, because they will link VLIs from different Scrum
instances.

The valueListItem attributes include extensions over regular Scrum that allow us to
track more than just the one variable we typically track in Scrum: size (in effort
units). These attributes and measurements will allow us to customize Enterprise
Scrum for other types of projects. There is typically a connection from

© Mike Beedle, All Rights Reserved Agile Management for the 21st Century

52

valueListItem with a metric in the list of metrics. For example, we may track profit
for a sales operation as a metric but this may not be an attribute of the “properties
for sale” VLI type in the Value List.

Scaling	

When the Value List is very large, or has different complex VLI types, we may want
to divide the work among several Scrum Teams. As said before, we typically choose
business areas for partitioning a broad value list. For example, if we are building a
large complex software development system such as a benefits management
system that includes pension, 401K (saving plan), and health and welfare plans; we
may want to partition the value list along those business areas. This is the so-called
extended Conway’s Law that says that there is a one-to-one correspondence
among:

Business Areas -> VLI-type -> subsystem -> Development Teams

This also applies to other domains. For example, real-state sales, where we may
want to partition the different sales areas corresponding to different customer types
such as retail, mansion, vacation and commercial areas:

 Commercial Customer -> Commercial Properties -> Commercial Sales Team

Improvement	 Cycle	 Concepts	

Once we have an initial valueList, our Enterprise Scrum team can start
accomplishing some businessValue through improvementCycles. In Scrum the
only improvement cycle is a Sprint: a 1-4 week time-box where we can accomplish
some Business Value (or potential business value). However, even though multiple
improvement cycles are technically not part of Scrum, people that use Scrum for a
variety of purposes around the world know the second level improvement cycles as
Releases.

Nesting	 Improvement	 Cycles	

In Enterprise Scrum a single team can have a nested listOfImprovementCycles of
diverse lengths that can be used for different purposes. These improvement cycles
need to have a name and a specific level and length, for example, “Quarterly
Improvement Cycle”. The level is the level of nesting from a day. For example, in
Scrum, the Sprint is level 1, and the Release is level 2.

The different improvement cycles can also define what we are measuring as
progress and businessValue in each one of them. It is convenient to choose
compatible metrics in nesting, so that the lower-level improvement cycles can feed or
build the higher-level improvement cycles. For example, a sales team that defines
their velocity as “net profit” in each of its 3 nested Improvement Cycles:

1 week ”Weekly Sales Improvement Cycles”

© Mike Beedle, All Rights Reserved Agile Management for the 21st Century

53

3 months “Quarterly Sales Improvement Cycles”
1 year “Yearly Sales Improvement Cycles”

Therefore, there will be 52 “Weekly Sales Improvement Cycles Instances”, 4
“Quarterly Sales Improvement Cycles”, and 1 “Yearly Improvement Cycle” in a year.
This sales team may also monitor product quality and customer satisfaction as well.
Every Improvement Cycle has a PE3R structure (Planning, Execution, Review,
Retrospective and Refinement), at any level and for any purpose.

However, to make predictions, the Scrum Team must re-calibrate its plans for higher
improvement cycles with every lower level improvementCycle that it finishes
through our velocity. For example, we can make a Quarterly Sales Forecasts based
on our Weekly Sales Improvement Cycles velocity, but we have to recalibrate our
plan at the end of every Weekly Sales Improvement Cycle.

Sometimes we can combine the PE3R meetings. For example, in Scrum sometimes
we can make the last Sprint Review also be the Release Review. And we
sometimes combine the Retrospective and Refinement as well. We can do this to
save time as long as the improvementCycles have a compatible metric.

Type	 vs.	 Instance	

In Enterprise Scrum we make the distinction between an improvementCycle, and
an improvementCycleInstance. The improvementCycle is where we define how
the improvementCycle works, and the improvementCycleInstance is the records
that results from execution an improvementCycle.

Each improvement cycle has a number of attributes that define it. In the example
above we had a one-week improvement cycle named “Weekly Sales Improvement
Cycle”. We can define the rest of the attributes as:

name – ”Weekly Sales Improvement Cycles”
level - level 1, since we are counting the nesting from the day frequency
length – 1 week
metrics(metric{name, description, unit, frequency}) – net profit, product quality,
customer satisfaction
charts(metricChart{name, description, metric, type}) – e.g. for profit:
metricChart(“profitBurnup”, cumulative profit in a week, net profit, burnup)
scrumBoard – standard without value list for improvement cycle since items are not
selectable
dependencyMatrix – none, assuming sales are independent
selectable – no, any items can be sold during the improvement cycle
valueIncrementName – retail sales
usableValue – profit
calculations(calculation {description, formula}) – quarterly sales projection

Notice this information is only defining how the “Weekly Sales Improvement Cycle”
works – it is not capturing any data for any particular improvement cycle.

© Mike Beedle, All Rights Reserved Agile Management for the 21st Century

54

However, each improvement cycle will also be instances:
improvementCycleInstaces(improvementCycleInstance)

that will record specific data in each one of them.

Each improvementCycleInstance has a number of additional attributes that are
important. To continue our “Weekly Sales Improvement Cycle” example:

• icID – it can be improvement cycle 2 or the 2nd Quarter
• initialValueListForImprovementCycle(VLI) – none, because it is not

selectable
• doneValueListForImprovementCycle(VLI) – this is the list of retail items

that got sold
• retrospective(well, improvements) – the list of what the store doing well to

sell, and the list of improvements after the improvement cycle 2 or the 2nd
Quarter

• metricInstances(metrics) – the actual daily numbers of net profit, product
quality and customer satisfaction for the improvement cycle 2 or the 2nd
Quarter

• chartInstances (chartInstance) – the charts corresponding to the actual
numbers in improvement cycle 2 or the 2nd Quarter

• calculationsInstances – this is the list of calculations for improvement cycle
2 or the 2nd Quarter

• ScrumBoardInstance - this is the instance of the ScrumBoard used for
improvement cycle 2 or the 2nd Quarter

• dependencyMatrixInstance – none since retail sales are independent

Value	 Increment	

Our goal in Enterprise Scrum is to deliver true businessValue and therefore to
deliver a value increment that has business value. We give a name to this value
increment: valueIncrementName, to underline the fact that what we are delivering
is business value.

For example, the valueIncrementName in product development could be “Product
Increment”. But valueIncrementName could be many other things in Enterprise
Scrum like “Sales Increment”, “Profit Increment”, “Research Increment”, “Compliance
Increment”, “Strategy Development Increment”, “Service Operations Increment”,
“Product X Development Increment”, etc.

In Enterprise Scrum we must be more general than Scrum, and we can’t assume
that the VLIs map directly to deliverables with businessValue; although this is ideal.
Therefore we map how the VLIs map to deliverables through the parameter
VLIsToDeliverableMap.

Metrics	

In Scrum, the accepted metric is to measure the amount of “effort left to completion”

© Mike Beedle, All Rights Reserved Agile Management for the 21st Century

55

measured in time, or relative units. But in Enterprise Scrum we can manage very
many different things i.e. companies, sales, product development, operations, audit,
etc.; so there needs to be a compatible set of measurements on well-defined metrics
that allow us to monitor progress in achieving businessValue, and with the balance
that we want to achieve in our optimizationGoals with the optimizationVariables,
which are a good starting point to define an appropriate metric.

By metric, we mean a quantifiable operational measurement of progress that reports
how much businessValue we are delivering. For example, our metric may have a
name like “Real State Gross Sales”, with a description like “amount of gross sales
left to achieve our sales goal”. It is important to specify the unit used to measure our
metric.

Metrics in Enterprise Scrum can be given both in terms of “goals achieved” or “goals
remaining”. Both are useful, but we prefer the “goals remaining” metric to drive
things to completion or achieve a higher goal. Using these metrics, a burn-down, a
burn-up, or a chart of a different type can be produced.

We may have one or more metrics, so it is convenient to keep a list of metrics.

Velocity	

The canonical velocity is the aggregate size (effort) of ALL VLIs finished according to
a DOD, and approved by the businessOwner in an Improvement Cycle. For
example in development we would aggregate all the story points in an Improvement
Cycle (Sprint). But in Enterprise Scrum we can use a metric for the
principalVLIType and come up with a “generalized velocity” – that is, not the
traditional “effort velocity”, but one that more accurately measures business value for
our process.

For example, in internal control management, we would aggregate the number of
controls tested (burnup) – not necessarily the effort that it took to test the controls.
Or even better, the number of controls still be tested to achieve a certain compliance
goal (burndown).

Another example. In sales, our velocity could be the added profits of all sales in that
iteration (burnup), or the profits that are still remaining to achieve a profit goal
(burndown).

Calculations	

Because in Enterprise Scrum we can have a listOfImprovementCycles we can
make predictions if the velocities of the Improvement Cycles have been measured.

This allows us to make calculations about the future like a calculation for budgets,
schedules, or calculations about the past like global customer satisfaction levels and
manage risk as we measure with the caveat that we need to re-estimate our plans

This doesn’t mean that we make “static future plans” in Enterprise Scrum. It only

© Mike Beedle, All Rights Reserved Agile Management for the 21st Century

56

means that we can make the “best prediction” given what we know at some point in
time. For example, we may calculate schedules, budgets, scope to be achieved by a
certain date, customer satisfaction, total net sales, etc.

Schedules	 and	 Releases	

The value list size is:

VL-Size = Σ size (from the valueListItem in the appropriate sizingUnit)

Number of improvement cycles:
ICs (improvement cycles) = VL-Size (Value List size)/ V (velocity in the appropriate
metric)

Then we simply calculate time as:

Schedule = ICs * length

Where length is the length parameter in the Improvement Cycle.

Burn	 rates	

The total cost is:
TC (Total Cost) = resources * average salaries * HR factor + proposal cost + other
fixed costs

And therefore the burn rate is:
BR (Burn Rate) = TC/Number of Yearly Improvement Cycles

Budgets	

Since we know the burn rate and the number of improvement cycles, we can then
calculate the budget:

$ (Budget with no profit) = ICs * BR

Even with a profit percentage X:
$ (Budget with X% profit) = ((1 + X)/100) * $

We can do similar calculations for sales projects, net profit, cumulative customer
satisfaction, etc.

Reports	

In Enterprise Scrum, we use generic versions of the standard Scrum reports, but in
addition we may use other charts.

We may use a customied scrumBoard, or chart, like a burndown to track any

© Mike Beedle, All Rights Reserved Agile Management for the 21st Century

57

Improvement Cycle e.g. Bi-weekly Business Management Improvement Cycle, or a
Quarterly Business Management Improvement Cycle.

ScrumBoard	

Because in Enterprise Scrum we have generic Improvement Cycles, the
scrumBoard need to be customized to reflect this. They may also be recursive.

For example, a company may have 6 bi-weekly “Biweekly Improvement Cycles” into
a larger “Quarterly Improvement Cycle”.

Figure 13. Scrum Board can be used for any Improvement Cycle length

within each quarterly row, there will be 6 bi-weekly columns like this one:

NOT SELECTED SELECTED WIP DONE
1 Bi-weekly VLIs
2 Bi-weekly VLIs
3 Bi-weekly VLIs
4 Bi-weekly VLIs
5 Bi-weekly VLIs

6 Bi-weekly VLIs
Figure 14. Nested Scrum Boards

Burndowns	 and	 other	 Charts	

Burndowns are reports that tell us how much more we need to achieve our goals.
The only burndown defined in the Scrum framework is the Sprint Burndown, which
typically reports “hours left to completion” vs. Sprint length (1-4 weeks).

As in Scrum, the preferred progress report in Enterprise Scrum is a burndown that
keeps track of size left to achieve our goal per unit of time, measured in sizingUnit
through the appropriate metric – regardless of the nature or length of the
improvement cycle.

© Mike Beedle, All Rights Reserved Agile Management for the 21st Century

58

	
Figure 15. Burndown and other charts can be used for any Improvement Cycle

For example, we can build a metricChart with a name like “daily sales”, “cumulative
sales”, “cumulative profits” or “customer satisfaction level”, through a time series to
measure a relevant quantity related to businessValue. We can also provide the
description of each one of these charts and specify what type of chart it is: burnup,
burndown, or other. Some charts don’t need to be burnups or burndowns – they
could just measure something important like “daily sales” or “customer satisfaction”
to check we are operating at the desired levels of performance.

We may need several charts to keep track of all the optimizationVariables and to
achieve our optimizationGoals – the desired balanced among the
optimizationVariables represented typically by a metric.

	

Scaling	

A parent Scrum Team is a Scrum Team composed of the Business Owner of each
collaborator of the parent’s Scrum Team, with a Business Owner and Scrum Master
of its own. We sometimes call this the Chief Product Owner, but this is not strictly
necessary – identifying the Business Owner of a parent team it’s enough.

Pattern: aggregate collaborators identical metrics
A parent’s mission is to deliver the Total Value Increment, which is the total value
aggregated by all the Value Increments produced by different Improvement Cycles
and by different Scrum Teams. Therefore, we must aggregate all the value of all
Value Increments for all the contributors of a parent.

A parent typically has calculations to compute the Total Value Increment that is
accumulated by the collaborators metrics. If this is the main metric of success, we
call the parent’s velocity global velocity, and the contributors velocity, the local
velocities.

For example, if we know the individual local velocities of a collection of sales teams
managed through Enterprise Scrum from a common lower-level metric for

© Mike Beedle, All Rights Reserved Agile Management for the 21st Century

59

improvementCycle like “Net Profit”; then we can calculate the parent’s global
velocity – the net profit of all the sales teams as the sum of all net profits for the
contributors.

This allows the parent organization to make global projections for the sales of all
stores for a higher level Improvement Cycle, like a Quarterly Improvement Cycle
from a Weekly Sales Improvement Cycle. Each of the sales teams, the parent’s
contributors, can also make longer-term projections based on their own local
velocities.

Pattern: collaborators always approve parent’s plans
However, if the parent makes a projection, the contributors within a parent
hierarchy need to approve a global projection plan by validating it through their local
velocities. This is a general pattern in Enterprise Scrum at any level of scale.

Pattern: Big Room
Ideally all of the team members in all the contributors would be present in the PE3R
meetings of the higher-level scrumInstance except the Daily Scrums. We call this
the “Big Room pattern” parent because the parent meets with the contributors
through the “Big Room”. For example, in sales, it is usual to see a “Quarterly Sales
Planning Meeting”, a “Quarterly Sales Review Meeting”, or even a “Quarterly Sales
Retrospective”.

Pattern: Representative System
However, because of space and communications limitations, we sometimes need to
send representatives to higher level PE3R meetings. We call this the
Representative System pattern”. For the representative system to work at least two
key things are needed: 1) the representative needs to be knowledgeable about what
the team is doing, and is capable of doing, 2) the representative needs to be trusted
and communicate well with the team. For example, in difficult software projects, the
higher-level PE3R planning meeting (Release or Sprint) is broken down in three
parts: 1) first the representative scans the value list to “eye ball” what the team can
do, then 2) the representative brings it to the team for the team to fully examine the
proposed value list for the team, and 3) the team finally approves the value list and
this is communicated to the higher level improvement cycle planning.

Pattern: Look Ahead Big Picture Dependencies
The representatives are typically the businessOwner of all contributors and
sometimes a technical person, when the business owner is not knowledgeable in an
area. When the system has dependencies, like in software development, the
representatives can provide a first-cut of the dependency management, and then let
the individual Scrum Teams resolve disagreements of these dependencies through
their individual PE3R meetings.

Pattern: Self-organized Coordination
We prefer that all teams are coordinated as needed through self-organization – each
Scrum Team is self-organizing, autonomous and cross-functional; so let every team
resolve its dependencies. Larman and Vodde have observed this as well [LeSS1],
[LeSS2]. In this environment integration and testing drives dependency
management and therefore who we need to work with on a day to day basis.

© Mike Beedle, All Rights Reserved Agile Management for the 21st Century

60

Pattern: Scrum of Scrums
When the different collaborators’ teams don’t have good working relationships to
“just start working with each other”, it is necessary to do coordination by doing so-
called “Scrum of Scrums” meetings. The purpose of these meetings is like the Daily
Scrums: getting Scrum Teams to work with each other by getting to know what each
of the teams are doing and identifying dependencies among them. Our goal should
be to eventually stop these meetings when enough collaboration and knowledge-
share is taking place among the teams.

Pattern: Coincident Improvement Cycles in Hierarchy
It is a very good idea that the contributors’ Improvement Cycles are coincident with
each other for a variety of reasons: aggregation with parent, true completion of
dependent VLIs, etc. And it is also ideal that the Improvement Cycles of the parent
are coincident with the contributors’ Improvement Cycles because that way the
parent will not report on partially completed work by the contributors.

Pattern: combine same level Improvement Cycle meetings across
contributors
We can also combine same level improvementCycle meetings, like review,
retrospective and refinement, as long as all of the businessOwners, stakeholders
and the collective team members of all teams are invited and fit comfortably in the
space for the meetings, and the size of the meeting is manageable. However, if they
don’t we need to have separate meetings with the set of business owners that make
up the parent scrumInstance.

Pattern: Communicate Up
When trying to accomplish some of the goals that we agreed upon at the Planning
meeting, the team may find that either:

1) the team can’t do VLIs with its current team members
2) that the VLIs are impossible to do (due to technology or domain constraints)
3) that some or all of the VLIs have a high uncertainty and they will not be

complete by the end of the improvement cycle
4) that some or all of the VLIs are no longer needed
5) that some VLIs are needed but they were not planned for (or accepted in that

improvement cycle)

All of these events need to be communicated right away to the Business Owner, so
that the Business Owner can make the appropriate decisions.

Pattern: News Channel
Sometimes a team finds something interesting, like a team developing new
medicines may find that they just discover a new vaccine or cure for a disease, or a
new product. These news need to be communicated not only to the Business
Owner, but possibly to other teams or organizations that want to listen to their “news
channel”. This is one way by which leadership can come from any level in the
organization. This is specially a good pattern if we are trying to achieve a Multi-
Agent organizational architecture.

© Mike Beedle, All Rights Reserved Agile Management for the 21st Century

61

Pattern: combine different level Improvement Cycle PE3R meetings
It is a good idea sometimes to combine different Improvement Cycle PE3R meetings
when these meetings are coincident. For example, in the last week of a quarter,
instead of having individual Review meetings for the Weekly Sales Improvement
Cycle, just have one Review meeting for the entire Quarter. You must be able to
demonstrate each of the sales teams performance as well as the overall
performance to combine the meetings.

Improvement	 Cycle	

As we said before, each ImprovementCycle has the same PE3R cycle, where the
parent’s PE3R improvementCycle is coincident with the contributors PE3R
improvementCycles, and possibly having multiple nested improvement cycles. As
we work and complete improvement cycles, we can save the ongoing and final
results in the improvementCycleInstances of each of the improvementCycles.

Planning	

Sprint	 Planning	 –	 part	 one,	 Agree	 with	 Business	 Owner	 what	 to	 do	 	

The businessOwner and the team members get together so that the team can
accept to attempt a certain amount businessValue carried by valueListItems from
the valueList. Before any businessValue is accepted by the team, care should be
taken to see that each valueIncrementItem has a DOR and a DOD.

If there is already a measured velocity – a metric that measures the businessValue
of the principalVLI progress, then the team can use that velocity to accept work for
an improvementCycle as long as the accepted VLIs don’t pose any concerns. If
they do, they the team may reject one of more VLIs, despite appearing to fit within
the velocity.

If there is not a measure velocity, the team needs to estimate how much work the
team can take based on their experience and then use one or more
improvementCycles to calibrate their estimates. It is very likely that the estimate is
be wrong. If the estimate is too small, the team can attempt more businessValue
from the valueList as long as the Business Owner approves they can pull more
work. If it is too much, the team will not complete the work estimated, and some of
the attempted businessValue will not be achieved.

Either way, our team will know at the end of the improvementCycle how much
businessValue is appropriate to attempt in the next Improvement Cycle.

In some cases, the valueList has selectable valueListItems. For example, a
software development team can select what features to implement in a Sprint.
However, in some cases, the valueListItems are non selectable, for example, in
the case of retail sales items.

Our goal in Enterprise Scrum is to deliver true businessValue. However,
sometimes businessValue cannot be achieved and the best option then is to deliver

© Mike Beedle, All Rights Reserved Agile Management for the 21st Century

62

potentiallyUsableValue – businessValue that would be releasable if the contents
of the valueIncrementName would be sufficient to be delivered to a customer. In
Scrum, we call this PSP, or potentially shippable product.

The result of this activity should be the initialValueListForImprovementCycle.

Sprint	 Planning	 –	 part	 two,	 Volunteer	 for	 VLIs,	 make	 plans	 for	 the	 VLIs,	 provide	 estimates	
for	 plans	

Once the team agrees to attempt a certain amount of businessValue, the team
members can then volunteer for valueListItems. The volunteers then provide a
planForVLI for each valueListItem they agreed to attempt, and they provide
estimates for the planForVLI.

Sometimes, it is a good idea to have a VLIsToDeliverablesMap, to specify the exact
format of delivery of the valueIncrementItems.

For example, a valueIncrementName (Product Increment) with a given
potentiallyUsableValue (Potentially Shippable Product) may be achieved by a
software development team implementing valueListItems where the planForVLI is
just a set of tasks (evaluated in hours), by a set of volunteers.

It is mandatory that the Business Owner stays with the team through the completion
of this last planning stage, so that any doubts can be resolved by the Business
Owner.

Execution	

We assume that all the team members will use all the BA elements: collaboration,
cooperation, helping each other and sharing knowledge; as well as the Scrum
Values in their day to day activities.

Daily	 Scrums	

The default Daily Scrum in Enterprise Scrum has the same format as in Scrum:

1) What did they do since the last time we met?
2) What will they do until the next time we will meet?
3) What issues or impediments the currently have
4) (Implicitly), what are the new estimates to completion for each of the

remainder work they have, if applicable, only for estimable tasks, see Value
List.

But the questions could be different. For example:

1) who do you depend on or could use help from?
2) Who depends on you or who can you use your help?
3) Issues or impediments

© Mike Beedle, All Rights Reserved Agile Management for the 21st Century

63

4) Estimates to completion

In some advanced teams, typically working on an Open Workspace environment,
self-organization, collaboration and knowledge sharing is so high, that the Daily
Scrums are no longer needed – everyone knows who they need to be working at an
time.

The team members in Enterprise Scrum report on any type of work. As in Scrum,
the Daily Scrums are not only for status to see how everyone is doing independently,
but so that dependencies one dependsOnVLIs that can be discovered on a daily
basis and the team members can then better optimize their work for that day.

One or more metricInstances, chartInstances, scrumBoardInstance,
dependencyMatrix or calculationsInstances could be updated on a daily basis.

The chartInstances can be burndowns, burnups, or other charts, of measured
metricInstances, and can be updated on a daily basis to see how progress is made
throghtout the improvementCycle.

The scrumBoardInstance is updated throughout the day as needed – not
necessarily at the Daily Scrum.

We can keep track of the dependsOnVLIs through a dependencyMatrix for an
improvementCycle either for the VLIs within a team, for VLIs in other teams, or for
individuals or teams.

So for example, the Company Management scrumInstance can report on work for
business-related issues; the Portfolio Management scrumInstance can report on
portfolio or program level work; and the Development scrumInstances can report on
their development work.

In the Scrum community, we call a higher-level Daily Scrum a Scrum of Scrums. In
Enterprise Scrum we simply call it the Daily Scrum for that scrumInstance.

The doneValueListForImprovementCycle are completed according to their DOD.
The businessOwner can approve of the completion of the different VLIs, so that the
team can attend the review with confidence that the businesOwner is satisfied with
the results.

Review	

The review for an improvementCycle has the purpose of showing all the
businessValue accomplished through the Value Increment by the team to the
businessOwner and other stakeHolders.

It is ideal that the businessOwner has been looking and approving the done VLIs
within the improvementCycle, so that the review has the form of a celebration and
showcase the businessValue accomplished.

© Mike Beedle, All Rights Reserved Agile Management for the 21st Century

64

Retrospective	

The retrospective is done to provide an opportunity for the scrumTeam that owns
that scrumInstance: the businessOwner, the stakeHolders, the scrumMaster
and the team members; to provide feedback for improvement about either the
businessValue accomplished, the Scrum process itself, or the collaboration of the
scrumTeam.

The retrospective typically has the format of first providing feedback on things the
Scrum Team is doing well; and then providing feedback on how to improve.

The results of the retrospective are a list of what the Scrum Team is doing well; and
a list of improvements that if possible need to be implemented right away: our first
goal is to improve. It’s a good idea to keep the results of the retrospective for future
improvementCycles; that way the conversation is continued, not started again i.e.
the wheel doesn’t have to be reinvented again.

Value	 List	 Refinement	

The businessOwner which is always interacting with the stakeHolders can always
refine – re-prioritize, add, change, the valueList. But the refinement is the official
meeting that is the last opportunity before a new improvementCycle is started to
change the valueList. The same activities that are needed for the initial valueList
are needed for refinement: definition, priority, colorizing, and sizing.

more	 Improvement	 Cycles	

Once an improvementCycle is finished, a new improvementCycle is started to
accomplish more businessValue. This can happen at multiple levels or just at one
level.

For example, a business management team, can monitor the accomplishment of
business goals through a 2-week Improvement Cycle. When one improvement cycle
finishes they can start another 2-week Improvement Cycle. However, the business
team can also be doing a quarterly 6-week Improvement Cycles, and using the 2-
week Improvement Cycle to closely monitor goals and make adjustments. The end
of the 6-week improvement cycle is coincident or synchronized with the 2-week
improvement cycles. These improvement cycles could include one or more teams,
or course.

 	

© Mike Beedle, All Rights Reserved Agile Management for the 21st Century

65

3.	 Enterprise	 Scrum	 Example	 -‐-‐	 Real	 State	 sales	

Scrum	 Instance	 description	

The Enterprise Scrum definition tells us about all the options for customizing
Enterprise Scrum as a general management system.

But how does a customization look like? This is just a short example to get the
reader a feel for Enterprise Scrum.

If we try to manage a real-state sales operation through Scrum we may define a
Product Backlog item as “a property to be sold”, but we may NOT know exactly
which ones will sell. There are other problems. The PBIs (product backlog items) of
the Product Backlog – wait, we are not building a product, are sized in effort, but in
sales we are really not interested in estimating the effort of a sale – we are interested
in profit, revenue, and other business-like things. When we make longer-term
projections, we are not interested in making projections about cost of sales– we
would like to make “sales projections” in revenue or profit. Finally, we might be
interested in tracking more than one quantity, not just profit or revenue, but maybe
customer satisfaction, o product quality.

Since we don’t know in advance which properties exactly will be sold, and we are not
interested in “sales cost or effort”, and we want to make projections of sales – not
cost; we may be tempted to say that Scrum can’t be used to manage our sales
process because it is incompatible with regular Scrum.

However, people around the world have found and find almost daily, a way to use
Scrum to manage a myriad of processes by making ad hoc adaptations. Enterprise
Scrum is a collection of those adaptations so that we can use Scrum to manage
almost anything in an agile way.

	

Scrum	 Team	 Parameters	

So let’s customize the real-state sales for a fictitious company name “Agile Realtors
Inc.”, that has 3 different sales teams sometimes interacting with each other:

the Residential Real-State Sales team,
the Vacation Property Sales team, and
the Commercial Real-State Sales team

These names are the instanceNames of our Scrum Teams. We would then have to
specify who are the businessOwners, stakeHolders, scrumMaster and team for
those Scrum Team.

Architecture	 Parameters	

We are doing sales – so we might be tempted to say that we don’t need architecture
parameters, right? Well, actually we do.

© Mike Beedle, All Rights Reserved Agile Management for the 21st Century

66

Architecture studies the relationship of concepts, so in real-state sales, not every
sales person knows the relationships of all concepts and to make a sale. In fact, it is
typically just the senior sales people that know these relationships well enough so
that they can mentor the junior sales people into them.

What might these relationship be? Appraisals, inspections, city codes, additions,
blueprints, sales commissions structures, taxes, fees of all kinds, real state
agreement client contractual clauses, buyer’s or seller’s contractual clauses, banking
rules and procedures, applications, offers, credit reports, etc. – the relationship of all
of these concepts is what we could call the “architecture of real-state sales”. So
architectureType is “real state sales”.

Depending on our team, we might find or choose we could use a self-organizing
architecturalManagementType, this is very desirable in Scrum teams of any kind,
because that way there won’t be any strong knowledge dependencies among the
team members. However, in reality this may be difficult to find or to achieve on day
one. It may take some coaching and a lot of learning before we get there. So let’s
assume that the architecturalManagementType is by “Agile Architect”, in other
words, someone with knowledge within the team will be mentoring and checking the
relationship in realtime. If the relationships were just checked at the beginning or
end of an Improvement Cycle, then this would look more like Traditional Architect
style of management.

Business	 Parameters	

Our domain of course is Sales for all 3 teams. For all of them the
businessCycleType is operations – because we are not developing a product or
service, we are managing operations.

But what exactly is businessValue for a sales team? We will define “net profit” to be
our number one goal for business value. However, we want to maximize net profit
provided we don’t compromise customer satisfaction too much, and that we don’t
have sales of substandard properties. I just provided a description of what
businessValue in terms of the optimizationVariables: net profit, customer
satisfaction and product quality. I can further specify optimizationGoals such as: we
want at least 99% customer satisfaction, and 99.55% product quality (no problems or
complaints with the properties sold after the sale.)

Template	 Parameters	

We could realize that there is already a template for Real State Sales, and choose
to use one. But for the example here, let’s pretend one is not yet available.

Structure	 Parameters	

The Agile Realtors Inc. company is also Scrum managed – meaning there is an

© Mike Beedle, All Rights Reserved Agile Management for the 21st Century

67

upper management Scrum Team for the company “Agile Realtors Inc.” that serves
as the parent for all the sales teams defined above and some additional support
teams like HR and accounting.

The parent may have as its team members all of the Business Owners of the
contributors – this is customary, and some additional individual members. Let’s
assume that HR and Accounting are also Scrum teams but that they are not scaled
at all: the HR team has only one person -- the business owner, and that accounting
has only 3 people plus the business owner.

Therefore, we would have 5 team members but only 4 contributors. This helps us
identify where the organization is scaled.

The company management team – and any Scrum Team at any layer for that matter,
can do Scrum regardless of the depth of scaling underneath.

If there were complex relationships we could map who we dependsOn on who
dependsOnUs. Let’s say that the Vacation Property Sales team is growing very
fast, so we could specify a dependency with the HR team. This relationship may be
temporary. In general we can track our dependencies with a dynamic
dependencyMatrix.

Technique	 Parameters	

Let’s say that we want to standardize on the sale method by Sharon Drew Morgen
called Buying Facilitation. This is the name of the technique we want to use. We
want to use it for the purpose of selling more with more customer satisfaction. We
would need to identify what processStep is it used: in the execution of an
improvementCycle, and described howItIsUsed, and how it is mapped to Scrum
through the mappingsToScrum as well as some references.

Enterprise Scrum is a formal process framework: we can insert any
number of techniques to customize its behavior.

Value	 List	 Parameters	

We had defined in detailed what businessValue is for our sales operation, so it is
really easy to see what our principalVLIType is “real state properties”.

There might be other VLI-types: legal, contracts, bank-related, credit reports, sales
tools, customer contract signups, accounting-related, etc. We would list all of them
as VLItypes.

We could have our company pushing some properties more than others and have
our sales prioritizable, but we are going to choose not to do this. Therefore, our
orderingTechnique would be blank at this point. This is ok. Not all parameters
need to have values.

© Mike Beedle, All Rights Reserved Agile Management for the 21st Century

68

Our sizingUnit will be “revenue from sale” – this is customary in a sales process.
We are very certain about the sizeCertainty, so we are going to say 90%. This
number is just going to help us gauge how certain is to make projections and
forecasts.

Real-State sales are for the most part independent, so we are going to say that the
dependentVLIs are NOT dependent. However, the knowledge to sell is still
important to share, so in our Daily Scrums we still want to find out who we need to
collaborate with.

Our properties are listed as our valueListItems in our valueList, as well as other
infrastructure stuff that sales are dependent on -- this is typical in Scrum: not
everything we do is gravy, there is unavoidable infrastructure or support VLIs that we
need to do and keep track of.

We would also need to have a common DOR (Definition of Ready) for all properties
– not all properties are ready to be sold even if they are under contract: they would
have to have a number of things to be “available for sale”: appraisals, inspections,
comparable analysis, etc. This would be another customization on the Scrum
process – beyond and above that in regular Scrum.

Our DOD (definition of done) for a sold property, would be to: 1) have that item sold
with a signed contract, 2) secure payment for the transaction, and 3) ensure the
payment is valid and cleared in a business checking account. With this DOD we can
make sales revenue charts, for example a burndown of “properties to be sold per
our definition of done to match a target”, and account for our “Sales Increment”,
which in this case is our valueIncrementName. We would track down and update
our revenue burn down during the Sprint – maybe even allowing for extra properties
to be sold if we found a way to improve our sales process.

Value	 List	 Instance	 Parameters	

Each one of our VLIs (valueListItems) – each one of the properties, will have a
name, a description, no priority – because we said our VLIs were not
prioritizable, size in revenue dollars. Each property will inherit the DOR and DOD
from the VLI-type. However, in Enterprise Scrum, as in regular Scrum, each VLI
(PBI), needs to have a definition of done.

Because we have a sales methodology in place, our planForVLI could be standard.

In the particular case of real state sales, it is rare to have a parentVLI – maybe
through selling an entire condo building, or a subdivision. And neither will it have a
depndsOnVLIs – because real-state sales don’t depend on each other.

We also have to specify if the VLI or VLIs are selectable, meaning, can we select a
real-state property into an improvement cycle, and have certainty that it would be
sold? Not, of course not. Therefore, our “sales velocity” – the velocity of our
principalVLIType, is going to be based on the metric “sales revenue”, but not the
specific properties to be sold.

© Mike Beedle, All Rights Reserved Agile Management for the 21st Century

69

Additional attributes can be added for the VLI: who added the property, what sales
budget does it have, etc.

Improvement	 Cycle	 Parameters	

Our company management team, has decided we will have 3 overlapping nested
improvementCycles:

1 week ”Weekly Sales Improvement Cycles”
3 month “Quarterly Sales Improvement Cycles”
1 year “Yearly Sales Improvement Cycles”

Each of these improvement cycles has a PE3R structure: planning, execution,
review, retrospective and refinement. It is best that these cycles are coincident for
each Scrum Team, and for all Scrum Teams as well.

When we are start or when we finishing a higher-level improvement cycle, we could
skip the lower-level improvement cycle as long as we can invite everyone involved to
the higher-level improvement cycle. We call this the “Big Room” pattern. For
example, we could have a merged quarterly planning, review or retrospective across
all teams, instead of having the individual weekly planning, review and retrospectives
and then go to the quarterly reviews to review the same information. However, if we
can’t fit everyone, or there are other logistical problems, we may want to use the
“Representative System” pattern, and then have the weekly sales reviews and
retrospectives, and then send a representative to the Quarterly Sales Review
meeting.

Each improvement cycles is defined with a name, level (counting from the day),
length (in time), metrics (“sales revenue” for all sales teams and all improvement
cycles), charts (burndown of revenue to be sold), scrumBoard types (using the
workflow of the Buying Facilitation technique at the weekly level, but just pipeline
statistics for Quarterly sales), no dependencyMatrix since real-state sales are not
dependent on each other. The name our valueIncrementName is “Sales
Increment”, of course.

We could also have a number of calculations that are important for the company at
the weekly level for each team. For example, total revue across all teams, net profit,
customer satisfaction (from survey), property quality (from complaints and after sales
interiews/surveys), etc.

We can also have the company management team aggregate compatible metrics for
the quarterly reports for all teams. This is a useful pattern to estimate global
velocity from local velocities and establish global metrics and charts from local
metrics. As such, since we have measured a Quarterly Sales Revenue before, we
could build expectations for sales revenue in the future.

In other words, we can use the concept of global and local velocity for any
improvementCycle, and scale with that our expectations in time and structure.

© Mike Beedle, All Rights Reserved Agile Management for the 21st Century

70

Improvement	 Cycle	 Instance	 Parameters	

Once we define our improvementCycles, we can have improvementCycleInstances
of them – this is where we track the day to day specifics of each improvementCycle,
and then record what happened in them for future reference.

For example, in the planning meeting of our “second week of the first quarter” -- this
is the icID of the improvementCycleInstance, the sales teams would accept a
weekly sales target based on the “first week of the first quarter” velocity - i.e. on what
the team sold last week. This is the metricInstance that resulted from the first week.

We also record what was the initialValueListForImprovementCycle, and what was
actually done according to our DOD, doneValueListForImprovmentCycle.

During Spring Execution, the sales team would get together every morning and meet
at the Daily Scrum to answer the 3 usual questions: 1) what did you work on? 2)
what will you work on? 3) what issues or impediments do you have? Real-state
Sales are typically independent of each other, so the purpose is not to identify
dependencies. Instead, the purpose of the Daily Scrum meetings, is to help each
other with sales tactics, knowledge, understanding of situations, and occasionally
pick up work from each other – someone could be going on vacation, or be sick, and
other people can pick up their work if needed to be.

Every day we could update our metricInstances, chartInstances,
scrumBoardInstance and dependencyMatrixInstance.

In our burndown chart, we will show target revenue in the Y-axis and time in the X-
axis, as usual. Profit could also work as a generalized velocity, but most people
choose revenue to manage their sales process. The team members would update
their sales to show in the “target revenue burndown” how their cumulative numbers
are looking every day. This chart should be updated every day and displayed visibly.
The Scrum Board will show all the properties in process sometimes with customized
workflows, in this case from our Buying Facilitation technique, in the WIP and
DONE columns. When the Sprint is done, all of the properties in progress will
automatically move to the next Sprint because we are not prioritizing their sales into
any one Sprint.

At our review meetings, when the Sprint time-box is done, the teams will show how
much progress they made individually and review how they achieved their sales
goal. The meeting can also be structured as a mini-celebration with food. The
Business Owner, the sales owner, should be there to review the overall results as
well as being involved as much as possible in the day to day operations.

At the Retrospective, the team should get together and ask the 2 familiar questions:
1) what are we doing well? and 2) how can we improve? The results of the
retrospective are recorded with what we are doing well and what improvements
we want to put in place.

© Mike Beedle, All Rights Reserved Agile Management for the 21st Century

71

First each of the team members – one by one, should write down and post on a
board what they think they are doing well, to avoid duplicates. And then they should
do the same with ideas for improvement. Maybe they have a better way to interact
with the banks, or they have techniques for ensuring pre-qualifications for the
buyers, etc. Finally, the team members and the Business Owner should choose
which improvements to put in place, and keep the results of the retrospective, and
bring them to the next retrospective in order to agilize the process.

Finally, at refinement, the Business Owner or each team should provide guidance as
to what type of properties desires to sell or what type of transactions the firm would
rather do, etc..

The weekly improvementCycle process starts again and again for each week, and
builds expectations for the quarterly improvementCycle, where aggregates are
calculated across the 3 sales teams and compared to expectations based on
empirical evidence.

This is an example of how to configure and use Enterprise Scrum.

© Mike Beedle, All Rights Reserved Agile Management for the 21st Century

72

References

1. [AgileAtlas], http://agileatlas.org/atlas/scrum
2. [AgileCompetitors] Steven L. Goldman; Roger N. Nagel; Kenneth Preiss. Agile

Competitors and Virtual Organizations: Strategies for Enriching the Customer
(Kindle Locations 205-206). Kindle Edition.

3. [AgileManifesto], www.agilemanifesto.org 2/11/2001.
4. [AgileSoftwareDevelopment] Beedle M., Schwaber K., Agile Software

Development with Scrum, Prentice Hall, 2001.
5. [Alexander] Alexander, Christopher (1979). The Timeless Way of Building.

Oxford University Press. ISBN 978-0-19-502402-9.
6. [ArthurDLittle] Arthur D. Little, Innovation Excellence Study, 2012.
7. [Atkins] Lyssa Atkins, Coaching Agile Teams: A Companion for

ScrumMasters, Agile Coaches, and Project Managers in Transition, Addisson
and Wesley, 2010.

8. [BalancedScoreCard], Kaplan, Robert S.; Norton, David P. (1996-08-02). The
Balanced Scorecard: Translating Strategy into Action (Kindle Location 3).
Perseus Books Group. Kindle Edition.

9. [Beedle-cOOherentBPR-1997] cOOherentBPR: A pattern language to build
Agile organizations, Michael A. Beedle, PLoP '97 Proceedings, Tech. Report
#wucs-97-34, Washington University (1997).

10. [Beedle-EnterpriseArchitecturePatterns-1998] Enterprise Architecture
Patterns: Building Blocks of the Agile Company, Michael A. Beedle, SIGS,
New York, (1998).

11. [BeyondBudgeting] Jeremy; Fraser, Robin (2003-02-25). Beyond Budgeting:
How Managers Can Break Free from the Annual Performance Trap . Harvard
Business Review Press. Kindle Edition.

12. [BlueOcean], K. Chan and Mauborgne R., Blue Ocean Strategy – how to
create uncontested Market Space and Make a the Competition Irrelevant

13. [Brooks1], R. A. Brooks (1987). "Planning is just a way of avoiding figuring out
what to do next", Technical report, MIT Artificial Intelligence Laboratory.

14. [Brooks2] R. A Brooks (1991). "Intelligence Without Representation", Artificial
Intelligence 47 (1991) 139-159.

15. [BusinessModelGeneration] Osterwalder, Alexander; Pigneur, Yves (2013-02-
01). Business Model Generation: A Handbook for Visionaries, Game
Changers, and Challengers (Kindle Location 361). Wiley. Kindle Edition.

16. [BusinessModelYou] Business Model You: A One-Page Method For
Reinventing Your Career (Kindle Locations 411-412). John Wiley and Sons.
Kindle Edition.

17. [CEK] Cooper, Edgett and Kleinschmidt, Best Practices in Product Innovation:
What Distinguishes Top Performers by Cooper, Edgett and Kleinschmidt,
2011.

18. [Christensen], Christensen C., The Innovator’s Dilemma: when New
Technologies Cause Great Firms to Fail, Harvard Business Press, 1997.

© Mike Beedle, All Rights Reserved Agile Management for the 21st Century

73

19. [Cohn1] Cohn, Mike (2004-03-01). User Stories Applied: For Agile Software
Development (Kindle Locations 269-270). Pearson Education (USA). Kindle
Edition.

20. [Cohn2], Cohn M., Agile Estimating and Planning, Prentice Hall, 2006.
21. [Cohn3], Cohn M., Succeeding with Agile: software development using

Scrum, Addison-Wesley, Upper Saddle River NJ, 2010.
22. [Collins1], Collins J. Porras, J., Built to Last, Harper Collins, Collins Business

Essentials, 1994
23. [Collins2], Collins J., Good to Great: why some companies make the Leap…

and other don’t?, Harper Collins, 2001
24. [Coplien] James O. Coplien, Borland Software Craftsmanship: A New Look at

Process, Quality and Productivity, Software Production Research Department,
AT&T Bell Laboratories, Proceedings of the 5th Annual Borland International
Conference, Orlando, Florida, 5 June 1994

25. [DAD] Scott Ambler, Scott Lines, Disciplined Agile Delivery: A Practitioner's
Guide to Agile Software Delivery in the Enterprise, IBM Press, 2012.

26. [DesignThinking], Kelley T. Littman Jonathan, The Art of Innovation,
DoubleDay, 2000

27. [Drucker1], Drucker, Peter (1957). Landmarks of Tomorrow, New York:
Harper & Row. pp. 122. ISBN 978-1-56000-622-0.

28. [DesignThinkng], Brown T, Change by Design: how design thinking
transforms organizations and inspires innovation, Harper Collins, 2009.

29. [DistributedScrum] Woodward, Elizabeth; Surdek, Steffan; Ganis, Matthew
(2010-06-21). A Practical Guide to Distributed Scrum (Kindle Location 286).
Pearson Education (USA). Kindle Edition.

30. [Eckstein] Eckstein, Jutta; Agile Software Development in the Large: Diving
Into the Deep (Dorset House eBooks) (Kindle Locations 11-12). Pearson
Education. Kindle Edition.

31. [Ford1], Ford, Henry; Crowther, Samuel (1930). Edison as I Know Him.
Cosmopolitan Book Company. p. 15 (on line edition).

32. [GameStorming] Gray, Dave; Sunni Brown; James Macanufo (2010-07-21).
Gamestorming: A Playbook for Innovators, Rulebreakers, and Changemakers
(p. 1). OReilly Media - A. Kindle Edition.

33. [Hamel1] Hamel, Gary; Prahalad, C. K. (1996-03-21). Competing for the
Future, Perseus Books Group.

34. [Hamel2], Hamel G., What matters now: how to win in a world of relentless
change, ferocious competition, and unstoppable innovation, Jossey-Bass
(Wiley Imprint), San Francisco CA, 2012

35. [Hammer], Michael Hammer and James Champy, Reengineering the
Corporation, Harper-Collins, New York, 1993.

36. [HBR-ChangeManagement] Harvard Business Review (2011-02-24). HBR's
10 Must Reads on Change Management (including featured article 'Leading
Change,' by John P. Kotter) (Kindle Location 977). Perseus Books Group.
Kindle Edition.

© Mike Beedle, All Rights Reserved Agile Management for the 21st Century

74

37. [Hoshin1], Hoshin kanri for the lean enterprise : developing competitive
capabilities and managing profit / Thomas L. Jackson, New York : Productivity
Press, c2006.

38. [Hoshin2],, Hutchins, David (2012-09-01). Hoshin Kanri (Kindle Locations 4-
6). Ashgate Publishing. Kindle Edition.

39. [LeSS1], Larman C. Vodde B., Scaling Lean and Agile Development: thinking
and organizational tools for large-scale Scrum, Addison and Wesley, Upper
Saddle River NJ, 2009.

40. [LeSS2] Larman, Craig; Vodde, Bas (2010-01-26). Practices for Scaling Lean
& Agile Development: Large, Multisite, and Offshore Product Development
with Large-Scale Scrum (Kindle Location 10). Pearson Education (USA).
Kindle Edition.

41. [LeanStartup], Reis E., The Lean Startup: how to make Entrepreneurs Use
Continuous Innovation to Create Radically Successful Businesses, Crown
Business, New York, 2011.

42. [Lefingwell] Leffingwell, Dean (2007-02-26). Scaling Software Agility: Best
Practices for Large Enterprises (Kindle Location 10). Pearson Education
(USA). Kindle Edition.

43. [Liker1], Liker J., The Toyota Way – 14 management principles from the
world’s Greatest Manufacturer, McGraw-Hill, New York, 2004

44. [Liker2], Liker J. Morgan J., The Toyota Product Development System:
integrating people, process and technology, Productivity Press, New York,
2006.

45. [LittleBets] Sims, Peter, Little Bets: How Breakthrough Ideas Emerge from
Small Discoveries. Free Press. Kindle Edition. (2011-04-19).

46. [Nagel1], Nagel R., –21st Century Manufacturing Enterprise Strategy, Roger
Nagel, Iacocca Institute, Lehigh University, 1991

47. [Kanter], Kanter, Rosabeth Moss (14 June 2011). "Innovation: the classic
traps". Harvard Business Review on Inspiring and Executing Innovation.
Harvard Business Press. pp. 149–181. ISBN 978-1-4221-6261-3.

48. [Kaplan] Kaplan, Saul, The Business Model Innovation Factory: How to Stay
Relevant When The World is Changing. John Wiley and Sons. Kindle Edition.

49. [Katzenbach] Jon Katzenback, Dougas K. Smith, The Wisdom of Teams:
Creating the High-Performance Organization, Harper Collins, 2006.

50. [Kniberg] Kniberg, Henrik, Lean from the Trenches: Managing Large-Scale
Projects with Kanban (Kindle Location 185). Pragmatic Bookshelf. Kindle
Edition.

51. [LeadingChange] Kotter, John P. (1996-08-07). Leading Change (Kindle
Location 83). Perseus Books Group. Kindle Edition.

52. [KotterForbes] Can you handle an exponential rate of change?
http://www.forbes.com/sites/johnkotter/2011/07/19/can-you-handle-an-
exponential-rate-of-change/

53. [Management3.0] Jurgen Apello, Management 3.0: Leading Agile Developers,
Developing Agile Leaders, Addison and Wesley Professional, 2011.

© Mike Beedle, All Rights Reserved Agile Management for the 21st Century

75

54. [MMM], Brooks F., The Mythical Man-Month: Essays on Software
Engineering, Addison-Wesley, Boston, 1974, 1995.

55. [MultiAgent] Wooldridge, Michael (2002). An Introduction to MultiAgent
Systems. John Wiley & Sons.

56. [Nonaka-PragmaticStrategy] Nonaka, Ikujiro; Zhu, Zhichang. Pragmatic
Strategy (Kindle Location 188). Cambridge University Press. Kindle Edition.

57. [Nonaka-ManagingFlow], Nonaka, I., Toyama, R. and Hirata, T. 2008.
Managing Flow: A Process Theory of the Knowledge-Based Firm. New York:
Palgrave Macmillan.

58. [Nonaka-KnowledgeCreating] Ikujiro Nonaka; Hirotaka Takeuchi. The
Knowledge-Creating Company: How Japanese Companies Create the
Dynamics of Innovation (Kindle Location 91). Kindle Edition.

59. [NonakaTakeuchi], Takeuchi, Hirotaka; Nonaka, Ikujiro (January–February
1986). "The New Product Development Game" (PDF). Harvard Business
Review.

60. [Nonaka-KnowledgeCreationAndManagement] Ichijo, Kazuo; Nonaka, Ikujiro
(2006-11-08). Knowledge Creation and Management:New Challenges for
Managers (Kindle Locations 20-21). Oxford University Press. Kindle Edition.

61. [Ohno], Ohno, Takechi, Toyota Production System: Beyond Large-Scale
Production, Productivity Press, Portland OR, 1978.

62. [OrgPatterns] James Coplien, Neil Harrison, Organizational patterns,
63. [Peters] Peters, Tom (2010-09-08). The Circle of Innovation: You Can't Shrink

Your Way to Greatness (Vintage) (Kindle Location 80). Random House, Inc..
Kindle Edition.

64. [Pink1], Pink, Daniel H. (2011-04-05). Drive: The Surprising Truth About What
Motivates Us (Kindle Locations 77-78). Riverhead Books. Kindle Edition.

65. [Pink2], Pink, Daniel H. (2006-03-07). A Whole New Mind: Why Right-Brainers
Will Rule the Future . Penguin Group. Kindle Edition.

66. [Poppendieck], Poppendieck M. Poppendieck T., Lean Software
Development: an Agile Toolkit, Addison and Wesley, 2003

67. [Porter1], Porter M., Competitive Advantage: creating and sustaining superior
performance, The Free Press, 1985 1998.

68. [Porter2], Porter M., Competitive Strategy: Techniques for Analyzing
Industries ad Competitors, The Free Press, 1980, 1998.

69. [Peopleware], Tome DeMarco and Tim Lister, Peopleware: Productive
Projects and Teams, Dorset House, 1987.

70. [PWC], Price Waterhouse Coopers, “15th Annual Global CEO Survey 2012,”
available at http:// www.pwc.com/ gx/ en/ ceo-survey/ pdf/ 15th-global-pwc-
ceo-survey.pdf.

71. [PowerofScrum] Sutherland, Jeff; van Solingen, Rini; Rustenberg, Eelco
(2012-01-31). The Power of Scrum. . Kindle Edition.

72. [ProcessControlTheory], Ogunnaike Babatunde A. and Harmon Ray W.,
Process Dynamics, Modeling and Control, Oxford University Press, 1994.

© Mike Beedle, All Rights Reserved Agile Management for the 21st Century

76

73. [ProfitZone], Slywotzky, Adrian J.; Morrison, David J.; Andelman, Bob (2007-
12-18). The Profit Zone: How Strategic Business Design Will Lead You to
Tomorrow's Profits (Kindle Location 127). Random House, Inc.. Kindle
Edition.

74. [RadicalManagement], Stephen Denning, The leader’s guide to radical
management : reinventing the workplace for the 21st century, John Wiley &
Sons, Inc. All rights reserved. Published by Jossey-Bass A Wiley Imprint 989
Market Street, San Francisco, CA 94103-1741.

75. [Rawsthorne] Dan Rawsthorne, Scaling Scrum with Scrum,
https://leanpub.com/PPSAD

76. [RisingManns] Rising, Linda Ph.D.; Manns, Mary Lynn Ph.D. (2004-10-04).
Fearless Change: Patterns for Introducing New Ideas (Kindle Location 165).
Pearson Education (US). Kindle Edition.

77. [RunningLean] Maurya, Ash (2012-02-24). Running Lean: Iterate from Plan A
to a Plan That Works (Lean (O'Reilly)) (Kindle Location 2). O'Reilly Media.
Kindle Edition.

78. [SAFe] Scaled Agile Framework e, http://scaledagileframework.com/
79. [ScenarioPlanning], Wade, Woody (2012-03-14). Scenario Planning: A Field

Guide to the Future (Kindle Location 59). John Wiley and Sons. Kindle
Edition.

80. [Schiel] James; Schiel (2012-05-14). Enterprise-Scale Agile Software
Development (Applied Software Engineering Series) (Page 19). CRC Press.
Kindle Edition.

81. [Schliep] Andreas Schliep, Scaled Principles, http://www.scaledprinciples.org
82. [Schwaber] Ken Schwaber, The Enterprise and Scrum, Microsoft Press, 2007.
83. [SchwaberSutherland] Schwaber, Ken; Sutherland, Jeff (2012-03-23).

Software in 30 Days: How Agile Managers Beat the Odds, Delight Their
Customers, And Leave Competitors In the Dust (p. 4). John Wiley and Sons.
Kindle Edition.

84. [ScrumGuide], Jeff Sutherland and Ken Schwaber, Scrum Guide: The
Definitive Guide to Scrum: The Rules of the Game, Oct 2011.

85. [ScrumPLOP] http://www.scrumplop.org
86. [Stacey], Ralph D. Stacey, Complexity and Creativity in Organizations,

Berrett-Koehler Publishers; 1 edition (January 15, 1996).
87. [SmartTribes] Comaford, Christine (2013-05-30). SmartTribes: How Teams

Become Brilliant Together (p. 233). Penguin Group US. Kindle Edition.
88. [StandishGroup] Standish Group, The Chaos Manifesto, 2012.
89. [StoberHansmann] Stober, Thomas; Hansmann, Uwe (2009-11-19). Agile

Software Development: Best Practices for Large Software Development
Projects (Kindle Location 5). Springer. Kindle Edition.

90. [Sutherland] Jeff Sutherland, Scrum: The Art of Doing Twice the Work in Half
the Time, Random House, 2014.

91. [Swarm] Swarm Behavior, http://en.wikipedia.org/wiki/Swarm_behaviour

© Mike Beedle, All Rights Reserved Agile Management for the 21st Century

77

92. [TWI] Training Within Industry,
http://en.wikipedia.org/wiki/Training_Within_Industry.

93. [TribalLeadership] Logan, Dave; King, John; Fischer-Wright, Halee (2012-01-
03). Tribal Leadership: Leveraging Natural Groups to Build a Thriving
Organization (Kindle Locations 395-398). HarperCollins. Kindle Edition.
[Wicked], Peter DeGrace, Leslie Hulet Stahl, “Wicked Problems, Righteous
Solutions: A Catolog of Modern Engineering”, Prentice Hall, 1990.

94. [Wommack1], Womack J. Jones D. Roos D., The Machine that Changed the
World, Free Press, New York, 1990, 2007.

95. [Wommack2], Womack J. Jones D., Lean Thinking: Banish Waste and Create
Wealth in your Corporation, 2nd Edition, Free Press, New York, 1996, 2003.

96. [Wommack3], Womack J. Jones D., Lean Solutions, , The Free Press, 2005

