
Do
Better
Scrum
An unofficial set of tips and insights
into how to implement Scrum well

Written by Certified Scrum Coach and Trainer Peter Hundermark

ScrumSense

Why this guide?
Certified Scrum Trainer and Coach Jim York says: Scrum is Simple. Doing Scrum is
Hard.℠

Many people I meet in organisations say that they find it hard to know how to get
started with Scrum. Others have teams that are following some Agile practices, yet are
far from becoming what Jeff Sutherland terms hyper-productive.

I hope this little booklet may be a source of inspiration to help you do better Scrum
and Agile. More importantly I hope it might encourage you to drag yourself, your team
and your whole organisation away from the old ways of working that simply don’t,
well, work and find new ways that lead to greater quality, faster delivery and above all,
more fun.

Let me know what you like and dislike so I can improve it.

Now go and do it!

Peter Hundermark
Cape Town, November 2009
Second edition

 Do Better Scrum · 1

What is Scrum?

Derivation

Scrum is a management framework within which complex products can be
developed. Scrum is derived from work in knowledge management, complex adaptive
systems and empirical process control theory. It contains influences from observed
software development patterns and the Theory of Constraints.

Scrum and Agile

Scrum is the most popular of the Agile methods. It is frequently used in conjunction
with Extreme Programming (XP).

What is the problem?
‣ Releases take too long
‣ Stabilisation takes too long
‣ Changes are hard to make
‣ Quality is falling
‣ Death marches are hurting morale

For decades software developers have been trying to employ defined methods of
working and managing projects. Defined methods are appropriate when the inputs are
well-defined and the method of converting these into outputs is predictable. Software
development and other forms of complex work are not suited to such methods. And
the high rate of project failures and customer dissatisfaction illustrates this amply.

How does Scrum help to solve it?

Alistair Cockburn [Cockburn 2008] describes software development as ‘a cooperative
game of invention and communication’.

Traditional development methodologies rely on documents to record and pass on
knowledge from one specialist to the next. Feedback cycles are too long or even non-
existent. Decades of project under-performance has shown these ways of working to
be an outright failure.

Scrum provides a platform for people to work together effectively and and relentlessly
makes visible every problem that gets in its way.

2 · Do Better Scrum

The Essence of Scrum

The essence of Scrum is:

‣ The team is given clear goals
‣ The team organises itself around the work
‣ The team regularly delivers the most valuable features
‣ The team receives feedback from people outside it
‣ The team reflects on its way of working in order to improve
‣ The entire organisation has visibility into the team’s progress
‣ The team and management honestly communicate about progress and risks

This way of working is based upon values of self-respect, respect for others, trust and
courage.

Why is Scrum silent on software development
practices?

Scrum does not attempt to instruct teams how to do their work. Scrum expects
teams to do whatever necessary to deliver the desired product. It empowers them to
do so. Development practices and tools change and improve all the time and good
teams will constantly work to take advantage of these.

Applicability

While Scrum was first applied to development of software products, it is suited to all
types of complex work. It is used today to manage software and hardware
development, support, advertising and marketing, churches and entire organisations.

How does Scrum map to traditional methods?

The short answer is that is does not. Agile and Scrum are based on a different
paradigm. Founders Jeff Sutherland and Ken Schwaber have frequently stated that
attempts to map defined to empirical methods are futile.

Will Scrum succeed in my organisation?

That depends on you! The implementation in your organisation may fail because of a
lack of resolve by people to overcome the problems that Scrum will certainly expose.
Yet thousands of teams on all continents and in every industry are succeeding in
making their world of work better today than yesterday.

 Do Better Scrum · 3

Agile Manifesto
In February, 2001, seventeen independent ‘lightweight’ software methodologists and
thinkers met to talk and find common ground. Amongst them were Scrum co-
founders Jeff Sutherland and Ken Schwaber, together with Mike Beedle, who worked
on the initial Scrum patterns and co-authored the first book on Scrum. The group
named themselves ‘The Agile Alliance’ and agreed on a Manifesto for Agile Software
Development. They further defined a set of twelve principles behind the manifesto,
reproduced in full on the opposite page.

Commentary

The Agile Manifesto and its twelve principles have stood up (so far) for nearly a
decade. They remain the litmus test for all Agile methods and practitioners by which to
evaluate their way of working. The most vocal criticism has been the bias towards
software development, when Agile methods are more broadly applicable.

Note

Scrum is one flavour of Agile. Adherence to the Agile Manifesto and all its principles
does not necessarily mean a team or organisation is following Scrum. However, non-
adherence to ANY ONE of these principles does imply that you are NOT doing Scrum
(or Agile)!

4 · Do Better Scrum

space for notes

Manifesto for Agile Software Development

We are uncovering better ways of developing software by doing it and helping others
do it. Through this work we have come to value:

Individuals and interactions over processes and tools
Working software over comprehensive documentation
Customer collaboration over contract negotiation
Responding to change over following a plan

That is, while there is value in the items on the right, we value the items on the left
more.

Principles behind the Agile Manifesto

1. Our highest priority is to satisfy the customer through early and continuous delivery
of valuable software.

2. Welcome changing requirements, even late in development. Agile processes
harness change for the customer's competitive advantage.

3. Deliver working software frequently, from a couple of weeks to a couple of months,
with a preference to the shorter timescale.

4. Business people and developers must work together daily throughout the project.

5. Build projects around motivated individuals. Give them the environment and
support they need, and trust them to get the job done.

6. The most efficient and effective method of conveying information to and within a
development team is face-to-face conversation.

7. Working software is the primary measure of progress.

8. Agile processes promote sustainable development. The sponsors, developers, and
users should be able to maintain a constant pace indefinitely.

9. Continuous attention to technical excellence and good design enhances agility.

10. Simplicity—the art of maximizing the amount of work not done—is essential.

11. The best architectures, requirements, and designs emerge from self-organizing
teams.

12. At regular intervals, the team reflects on how to become more effective, then tunes
and adjusts its behavior accordingly.

Highsmith (2001)

 Do Better Scrum · 5

The Scrum Roles

Roles Introduction

There is no Project Manager role in Scrum. The responsibilities of the traditional project
manager are divided over the three roles in the Scrum Team:

‣ The Product Owner manages the product (and return on investment)
‣ The ScrumMaster manages the process
‣ The team manages itself.

This is challenging to individuals who currently fulfil this role and to managers in
organisations in which they work. Michele Sliger and Stacia Broderick have written a
helpful guide to the transition from Project Manager to Agile Coach [Sliger and
Broderick 2008].

There are no appointed leaders of the Scrum Team beyond the Product Owner and
ScrumMaster; none is required. The need for line managers is reduced, as teams
manage themselves to a great extent. It is not uncommon for 50 team members to
report directly to a single line manager in an organisation that has made the transition
to Agile.

Self-organisation

Self-organisation does not at all imply a laissez-faire approach; on the contrary, self-
organised teams are highly disciplined. They are given full autonomy and carry
correspondingly greater responsibility for delivery accordance with their own
commitments. They are encouraged to take reasonable risks and to learn through
failure and self-reflection. High trust and high commitment is an automatic outcome of
truly self-organising teams.

Teams new to Scrum will require some encouragement to explore their new, broader
boundaries and to take ownership. They frequently need to overcome strong ‘muscle
memory’ of the poor ways in which they were managed and worked, sometimes for
years.

Self-organisation is not an option in Scrum; it is a core principle. Without this, high-
performing teams will not happen. Caveat emptor!

6 · Do Better Scrum

Product Owner

The responsibilities of the Product Owner role are:

‣ Working on a shared vision
‣ Gathering requirements
‣ Managing and prioritising the Product Backlog
‣ Accepting the software at the end of each iteration
‣ Managing the release plan
‣ The profitability of the project (ROI)

Metaphor: The Product Owner is a CEO.

ScrumMaster

The responsibilities of the ScrumMaster role are:

‣ Empowering and shepherding the team
‣ Removing impediments
‣ Keeping the process moving
‣ Socialising Scrum to the greater organisation

Metaphor: The ScrumMaster is a facilitator, coach, mentor and bulldozer!

Team

The responsibilities of the Team or Team Member role are:

‣ Estimating size of backlog items
‣ Committing to increments of deliverable software
‣ —and delivering it
‣ Tracking own progress
‣ Is self-organising—but accountable to the Product Owner for delivering as

promised

 Do Better Scrum · 7

Team members can be developers, testers, analysts, architects, writers,
designers and even users. The team is cross-functional, which means that
between all its members they possess sufficient skills to do the work. There is
no dictated leadership hierarchy within the team members.

The Scrum Team comprises all three roles: one Product Owner, one
ScrumMaster and five to nine Team Members.

The Sprint Meetings
The sprint is the heartbeat of the Scrum cycle. It is bookmarked by sprint planning at
the start and by the sprint review and sprint retrospective at the end. The length of the
sprint is fixed and is never extended. Most Scrum teams choose two, three or four
weeks as their sprint duration. Each day during the sprint the team holds a daily
Scrum meeting. Every meeting in Scrum is strictly time-boxed. This means that is has
a maximum duration. It does not means that it needs to occupy this full time. For a 30
day (or four week) sprint the time boxes for planning 1 & 2, review and retrospective
are set at four hours each. For shorter sprints they should be adjusted in proportion to
the sprint length.

Some key attributes of the meetings are described in the following sections. First,
though, I have collected a few experiences I think are worth sharing.

8 · Do Better Scrum

I find two-week sprints a good length to start with. After three sprints, let the
team re-assess the sprint length.

Teams need three sprints to grasp the new concepts, break down old habits
and start to gel as a team.

Never do sprint planning on a Monday morning. The team is not yet at its
best and it is the most common day for holidays and sickness. Never hold
reviews or retrospectives on a Friday afternoon. The team is tired and
thinking about the weekend. Therefore choose sprint boundaries on
Tuesdays to Thursdays.

Teams running two-week sprints might be tempted to hold all sprint
boundary meetings in one day. In other words, start the day with the review,
then the retrospective; after lunch do sprint planning parts 1 and 2. The
thinking is to get all the meetings out of the way and have 9 full days to do
the work. In my experience there are two problems with this approach:

✦ The team does not get that these meetings are part of the work—in fact
the most important part to get right!

✦ During the last part of the day—sprint planning 2—the team is brain-dead.

Yet, as always, let the team try it out if they so wish!

Sprint Planning - Part 1

Part 1 of sprint planning (SP1) is really a detailed requirements workshop. The product
owner presents the set of features he would like and the team asks questions to
understand the requirements in sufficient detail to enable them to commit to delivering
the feature during the sprint. The team alone decides what it can deliver in the sprint,
taking into account the sprint duration, the size and current capabilities of its
members, its definition of DONE, any known holidays or leave days and any actions it
committed to during the retrospective held just prior this meeting.

The product owner must be present during this meeting to lead the team in the right
direction and to answer questions—and they will have many. The ScrumMaster must
ensure that any other stakeholder needed to help the team understand the
requirements is present or on call.

Any new backlog items for inclusion in the current sprint and not previously estimated
will be sized immediately during this meeting. This not, however, an excuse to avoid
grooming the backlog—see below!

At the end of SP1 the team commits to the Product Owner what they believe they can
deliver in the form of running tested features. An experienced team may use historic
velocity as a predictor (‘yesterday’s weather’). This is known as velocity-based
planning. My recommendation to most teams is to do commitment-based planning.
The backlog items the team has committed to is called the selected product backlog.

Sprint Planning - Part 2

If part 1 is a requirements workshop, part 2 of sprint planning (SP2) is a design
workshop. In this session the team collaborates to create a high-level design of the
features it has committed to deliver. An outcome of this session is the sprint backlog,
or the list of tasks that the team collectively needs to execute in order to turn the items
in the selected product backlog into running tested features. This set of tasks is called
the sprint backlog and is most often represented on a physical task board.

During SP2 the team may have additional questions regarding the requirements. The
ScrumMaster must ensure that the Product Owner and, if necessary, other
stakeholders are on call to answer them.

Design, as everything else in Agile, is emergent. Also, the meeting is time-boxed. So it
is normal that the team won’t get the design perfectly done in this session and will
discover more tasks during the sprint. This is not a sign that something is wrong. They
will simply grab a post-it note and pen and create more tasks whenever necessary
during the sprint.

 Do Better Scrum · 9

You will know that SP2 is working when the team is gathered together
around the white board discussing noisily or even arguing about the ‘best’ or
‘right’ way to implement a feature.

Daily Scrum Meeting

The daily Scrum meeting is one of the three primary inspect and adapt points in
Scrum. The team meets to communicate and synchronise its work. Since the team is
collaborating, this is essential to ensuring continued progress and avoiding work
blockages. The team will also continuously assess its own progress towards achieving
its sprint goal.

The daily Scrum meeting is NOT for reporting progress to the ScrumMaster or Product
Owner or anyone else. The Product Owner may attend provided he is well-behaved,
which means speaking only when he is spoken to! The ScrumMaster makes sure,
using all her skills, that each team member has signed up for some work for the next
24 hours, that this work is directed solely at helping the team as a whole deliver the
next item in the backlog and that any impediments to doing this work are bulldozed
out of the way as fast as possible. The ScrumMaster also ensures the meeting is
restricted to 15 minutes, which, surprisingly is ample time.

Jason Yip [Yip 2006] provides a useful guide to help ScrumMasters to run this meeting
well.

Sprint Review

The sprint review is sometimes, and wrongly, called the sprint demo. While it does
include a demonstration of the new features the team has completed during the sprint,
its primary purpose is to inspect what the team has delivered and gather feedback
from the attendees to adapt the plan for the succeeding sprint. Thus it is much more
than a demonstration.

The focus of the sprint review is the product the team is building.

When asked who should be invited to the sprint review, I answer ‘the whole world’. My
intent here is to help the ScrumMaster and the entire organisation understand that the
direct attention and feedback of a broad constituency of the organisation is crucial to
maximising the value the team will deliver in succeeding sprints. Sprint reviews have
many possible outcomes including cessation of the project. In most instances, the
team is authorised to continue for another sprint and a goal for this next sprint is set.

10 · Do Better Scrum

space for notes

Sprint Retrospective

The sprint retrospective is the final meeting of the sprint. It follows immediately after
the sprint review. It is never omitted!

Whereas the sprint review is focussed on the product, the retrospective is focussed on
the process—the way in which the Scrum team is working together, including their
technical skills and the software development practices and tools they are using.

And whereas the sprint review is open to the world, the sprint retrospective is
restricted to the members of the Scrum team—that is the Product Owner,
development team members and ScrumMaster. Outsiders, including managers at
every level in the organisation are strictly excluded unless specifically invited by the
team.

This rule is to be understood in the context of the goal of the meeting, which is to
inspect at a deep level how the team is collaborating and performing and to take
action to improve. This often requires deep introspection and sharing, which in turn
requires a safe and secure environment. Norman Kerth’s Retrospective Prime Directive
undergirds this: ‘Regardless of what we discover, we understand and truly believe that
everyone did the best job they could, given what they knew at the time, their skills and
abilities, the resources available, and the situation at hand.’ [Kerth 2001].

Boris Gloger [Gloger 2008] offers a simple pattern called Heartbeat Retrospectives for
new teams to learn to hold valuable retrospectives. Esther Derby and Diana Larsen
[Derby and Larsen 2006] provide helpful activities for facilitators of Scrum retrospective
meetings.

Estimation Meeting

This meeting is not mentioned in some of the Scrum literature, but is essential if you
want to achieve a continuous flow of the most valuable done features from your
teams.

During every sprint, the product owner convenes one or two meetings where the
Scrum Team and, if required, other stakeholders, meet to size backlog items that have
been added or re-size large items that need to be split into smaller ones for tackling in
the next sprint or two.

 Do Better Scrum · 11

Teams need to devote 5-10% of their time during the sprint to preparation for
the next sprint or two. The estimation meeting described above is an
example. Other examples are story-writing and release planning workshops.
This is important to avoid a stop-start effect at the boundary of every sprint.
The other implication, of course is that teams should spend 90-95% of their
time doing the work of the current sprint!

Scrum Artefacts
Scrum mandates only four artefacts:

‣ Product Backlog
‣ Sprint Backlog
‣ Burndown Chart
‣ Impediment Backlog

Scrum is purposely silent about all other documentation and artefacts. This sometimes
leads to the misunderstanding that Agile teams don’t need to do any documentation. I
coach teams to produce only those artefacts that are really valuable to themselves and
to others in the future. This cuts out worthless work and unnecessary killing of forests!

Product Backlog

The product backlog is simply a list of work items that need to be done over time.
Items may be added to the backlog by anyone, but only the Product Owner has the
right to determine the order in which they will be executed by the team. Of course a
good Product Owner will negotiate this with stakeholders and the team.

Requirements are emergent, meaning we do not and cannot know up front every
detail about what we want in a product. Therefore the Product Backlog is a living
document and requires constant grooming to keep it current and useful. Many new
items will be added over time; existing items are disaggregated to multiple, smaller
items; some items may be removed on realising that a desired feature is no longer
needed. Moreover, items need to be sized in order to determine the likely relationship
between value, time and cost. And, of course, the order of items in the backlog will
change as the relative value between them is seen differently today from yesterday.

In nearly all cases it is sufficient, and generally preferable, to create and maintain the
Product Backlog as a set of stories written on physical 150 x 100 mm (6” x 4”) cards.
Ron Jeffries [Jeffries 2005] coined the alliterative triplet Card, Confirmation,
Conversation (the 3C’s) to describe how to work with stories. The stories are
commonly written from the perspective of a user of the product. Mike Cohn’s book on
user stories [Cohn 2004] will tell you all you need to know.

Sprint Backlog

Most teams will know the sprint backlog as the task board, which is the physical
representation of the list of work they have committed to do during the current sprint.
The task board is an example of a kanban, a Japanese word meaning sign or visible
signal. It tells the whole team and anyone else what work they have planned or the
sprint and their current status.

12 · Do Better Scrum

Sprint Burndown Chart

The sprint burndown chart is designed to help the team monitor its progress and be a
leading indicator of whether it will meet its commitment at the end of the sprint. The
classic format requires teams to estimate the duration of each task in hours and on a
daily basis to chart the total remaining hours for all uncompleted tasks.

I coach teams to burn down their sprint in story points. The rationale behind this is:

‣ Estimating new tasks and re-estimating in-progress tasks requires effort
‣ Estimating tasks is inaccurate
‣ Estimating in units of time harks back to the bad old ways of working
‣ Completion of tasks delivers no value; only completed stories (features) deliver

value.

So in my coaching world the sprint burndown is just like the product or release
burndown, except the the X-axis scale is days rather than sprints.

 Do Better Scrum · 13

Sprint Backlog
or Task Board

Adapted from http://epf.eclipse.org

Sprint
Burndown

Chart

Product or Release Burndown chart

The product burndown chart, sometimes known as the release burndown chart,
measures the rate of delivery of a stream of running, tested, features over time. This
rate is know as the team’s velocity. Because features vary in complexity, and therefore
effort and time, we use a scale to compare their size. The most common scale is
known as story points. Once a team has worked together for a few sprints, it generally
establishes its velocity within a definable range. Product Owners then use this velocity
to predict the rate at which the team will deliver features in the future, leading to
credible release plans.

I coach teams to use an alternative form of the product burndown chart that
simultaneously allows Product Owners to track changes to the product backlog. This
is essential, given the dynamic nature of this list.

Using this chart Product Owners are able to report progress, determine release dates
and predict release scope.

Impediment Backlog

The impediment backlog is simply the current list of things that are preventing the
team from progressing or improving. These are things the ScrumMaster must bulldoze
out of the way in her never-ending quest to help the team be the best they can.
Impediments range from getting the coffee machine fixed to replacing the CEO! A
good ScrumMaster will try to remove impediments within 24 hours of them being
identified. (OK, perhaps not the CEO.)

14 · Do Better Scrum

Product
Burndown

Chart

Starting Scrum
Ken Schwaber [Schwaber 2007] says there is nothing that needs to be done before
starting Scrum. I interpret this to say that there is no tailoring of the process needed in
order to start. Nevertheless the literature is thin on how to get going and all of us
struggled getting our first Scrum team going without outside help.

The best thing you can do is hire an experienced coach. Failing that, you can try using
a pattern that has worked for me with dozens of teams.

Obviously (I hope) you need a Scrum team. This means a Product Owner, a
ScrumMaster and five to nine team members. Then follow this sequence of steps,
which will be detailed in the next pages.

1. Train the Scrum Team in the basics of Scrum

2. Establish the vision

3. Write user stories to form the product backlog

4. Order the backlog items by business value

5. Size the backlog items

6. Re-order the backlog, as necessary, by additional factors

7. Create the initial release plan

8. Plan the first sprint

9. Start sprinting!

 Do Better Scrum · 15

I start new teams with a full day’s training in the essentials of Agile and
Scrum. This is sufficient to start a Scrum Team that has an experienced
ScrumMaster/coach to support them during their first sprints.

Steps 2 to 7 can be completed comfortably in a two-day product workshop
attended by the entire Scrum Team. The best workshops are attended by
additional stakeholders like enterprise architects, managers and business
people.

Training

In my team training I use a lot of group exercises and games to illustrate the principles.
I cover all or most of the following topics:

‣ The power of self-organisation
‣ Empirical versus defined processes
‣ The value of collocation
‣ The importance of trust
‣ Agile principles (Agile Manifesto)
‣ The Scrum flow (cycle of meetings)
‣ Roles and responsibilities (3 Scrum roles plus more)
‣ Using user stories for requirements
‣ Agile estimation using planning poker
‣ Concepts of size and velocity
‣ Done!
‣ Using a task board
‣ Monitoring progress (burndown charts)
‣ Simulation of an entire sprint

Visioning

Katzenberg and Smith [2002] have confirmed that having clear goals is essential in the
creation of high-performing teams.

The Product Owner will usually share his or her vision for the product. One technique I
use is to get each member to write his or her personal version of the vision. Then
members pair up and work to create a single shared vision statement from their initial
efforts. The process of pairing up continues until the entire team collaborates to
formulate a single statement.

This exercise utilises the power of the group and results in greater commitment to the
resulting vision. The team will display the vision prominently in their work space. The
visioning exercise may take one to three hours.

Creating the Product Backlog

The next stage is to hold a story-writing workshop. It is advantageous to involve
business stakeholders here. Certainly the whole Scrum Team is involved. Of course,
the ScrumMaster (or coach) facilitates.

Writing good user stories is simply a matter of practice. The Pareto principle (80/20
rule) applies here, as always.

16 · Do Better Scrum

Mike Cohn [Cohn 2004] has provided an excellent guide to writing good user stories. I
encourage every Product Owner to have his personal copy always to hand!

Bill Wake suggested the helpful INVEST acronym for the attributes of a good user
story [Wake 2003].

At a minimum the backlog needs to contain enough items for the team to plan the first
sprint. More commonly, the backlog contains all the items that make up the next
planned (or hoped-for) product release.

As a guide, the backlog should be 80% complete (but not ordered or sized) by the
end of day one. The first part of day two can be used to add the final 20% and to
resolve any open questions. The overnight break is a very useful hiatus that may spark
fresh thinking about the work.

Ordering the Backlog

The backlog is now ordered by business value. This appears easier to say than to do
well. Mike Cohn [Cohn 2006] describes two methods for prioritising desirability: the
Kano model of customer satisfaction and Wiegers’ relative weighting approach. What I
like about both is that they consider not only the benefit of having the feature, but also
the penalty of excluding it. This is particularly helpful when the backlog includes
technical items whose business value is not immediately obvious.

At the minimum, the Product Owner’s subjective judgement of the value of one feature
against another is good enough. Better is a somewhat quantitative assessment using
a technique similar to planning poker.

However it is done, it is a core responsibility of the Product Owner to order the
backlog.

 Do Better Scrum · 17

Template: As a role / persona, I want function so that reason.

Example: As a programmer, I want coffee so that I can stay awake.

Independent—ideally can be implemented in any order

Negotiable—and negotiated

Valuable—to the customer

Estimatable—enough to rank and schedule it

Small—and with short descriptions

Testable—I could write a test for it

Sizing the Backlog

Project planning has always had estimation as the lynch-pin. Project managers like
myself have spent weeks calibrating complex models with historical data.

The simple reality is that the best of these techniques yield no better results than much
simpler and faster techniques such as planning poker and affinity estimating. Planning
poker works partly because has a solid basis in theory, but mostly because the people
who estimate are those who will do the work. Who would have thought that?

Planning poker is fast. A practised team will estimate at an average rate of 3 minutes
per work item. Planning poker is accurate. Estimates using planning poker are as
good as the best traditional methods. And planning poker is fun. It takes away the
pain usually associated with this topic. Commercial planning poker cards are
obtainable from several sources at a cost of about $10 (including shipping) per set of
four packs. You can print your own on plain card for next to nothing.

Affinity estimating is even faster than planning poker. It is great for getting started when
we have an entire backlog to estimate and time is more important than great accuracy
and information sharing.

However, we still need to understand a few key concepts about agile estimating:

‣ We size items relative to one another. Why? Because as humans we find this
more natural and the results are more reliable. So it’s easy to agree that ‘this
story is twice the complexity of that one’ even though we don’t know how long
each will take to implement.

‣ We size items using units of complexity rather than time. Why? Because it
allows us to separate the rate at which a team works from the size or
complexity of the work. This shields us from having to change our estimates
according to who does the work, or as the teams skills and capacity change
over time. We use ‘story points’ as units.

‣ We use a non-linear sizing scale because the difference between a ‘1’ and a
‘2’ is obviously more meaningful, relatively, than that between ‘20’ and ‘21’. My
preference is to use the pseudo-Fibonacci numbers : 1, 2, 3, 5, 8, 13, 20, 40
and 100. And I define 1 to 8 or perhaps 13 as the size range of features a team
can delivery in one sprint. The higher numbers are reserved for large stories
(‘epics’) that will need to be split into smaller stories before they can be taken
into a sprint.

‣ We relate our size estimates to time by means of velocity, which is the rate at
which a team can deliver running, tested features to their product owner. We
say that a team has a velocity of ‘25’ when they are able to deliver at the end
of every sprint ‘done’ stories whose sizes, on average, add up to 25 points.

18 · Do Better Scrum

One team’s sizes are generally not comparable to those of another. This is
immaterial unless we have multiple teams working off the same product
backlog. This is an issue of scaling Scrum and is easily solved, but is not a
topic for this little guide.

Re-Ordering the Backlog

After sizing the backlog items we may find that some items should be re-ordered.
Factors to take into account in addition to the business value include:

‣ Size: we will naturally choose to implement a simple (small) story ahead of a
complex (large) story if they have similar business value.

‣ Learning: we may choose to implement a story earlier if it will help the team
learn about the business domain or a new technology.

‣ Risk: we may choose to implement a story early because doing so will mitigate
an identified risk. Obvious examples are items that will help establish
performance and scalability limits.

We must always remember that the Product Owner has final say on ordering the
backlog.

Release Planning

Once we have ordered and sized the backlog the next step is creating the initial
release plan. To do this we need an estimate of our team’s velocity. However we
haven’t done any work yet, so we use a simple technique known as commitment
based planning.

First, of course, we must be sure to know the team size during the sprint—whether
any member will be away on leave, training, etc. And we must choose the sprint
length—I usually recommend two weeks for a new team. And we must create a
definition of DONE for the team—what does it mean when the team says it has
completed a story.

The ScrumMaster now picks the first item from the top of the backlog and asks the
team ‘can you complete this item during the sprint?’. She continues to do this until the
team is no longer confident to add items. Counting up the story point values of all the
committed items, the team has its initial estimate of velocity.

This velocity value is used to apportion the remaining backlog items (at least those that
have been estimated) over succeeding sprints. This list of items attached to sprints is
our initial release plan. It is accurate? Perhaps not, but it is probably more credible that
anything a project manager could produce before at such an early stage of a project.
And as we start work and complete one sprint after another, we will begin to chart our
actual velocity and use this as a predictor of future output. So the release plan is a
living thing that becomes more and more reliable as we progress.

 Do Better Scrum · 19

Don’t let the product workshop drag on. It is possible within two days for any
team and any product to prepare enough backlog items for the first few
sprints at least.

Collocation and Team Rooms
Alistair Cockburn [Cockburn 2007] defines software development as a cooperative
game of invention and communication. The Agile Manifesto says developers and
business people must work together daily and that face-to-face conversation is the
best way to transfer information.

In order to collaborate effectively, there is no single factor that delivers more value than
collocation. A study of collocated software development teams [Teasley, Covi,
Krishnan, & Olson, 2000] has shown that they are twice as productive as non-
collocated teams.

The definition I use for collocation is that team members sit no further than 6 m (20’)
from their farthest member. It follows that there is a limit to the number of people that
can fit into such a space. In practice this number is 8 to 10, which happily matches
the maximum size of a Scrum team.

Furthermore, every team member must be able to see every other member without
doing more than turn her head or swivel in her chair. This means no dividers between
desks—good-bye Dilbertville!

For no good reason beyond habit, organisations—note not teams—resist changing
their environment to facilitate effective collocation. This is despite evidence that
collocated team spaces require no more floor area, on average, than present layouts.

Management will challenge you about building dry walls, believing them to inhibit
flexibility. This is simply not true—flexibility is required in the organisation structure, not
team spaces!

My experience is that 90% of Scrum teams in organisations new to Agile struggle on
with their miserable work spaces for a year before their management is persuaded to
make the necessary changes. And once they have been made, everyone agrees that
the improvement was immediate and measurable. Why is this??

In the hope that this absurd resistance will diminish, I offer a simple layout of a
collocated team room on the next page. It goes beyond the scope of this little guide to
provide all the reasoning behind this design—you’ll have to hire me if you want that!

20 · Do Better Scrum

Team rooms significantly reduce the need for meeting rooms—teams can do
sprint planning, daily meetings and reviews in their room.

Be warned that your architect or office designer won’t be much help to you.
She has not been trained in the design of team spaces.

The cost of the changes (drywalls and furniture) will be recovered in one
week to one month! Sounds unbelievable, doesn’t it?

 Do Better Scrum · 21

Some team space layout parameters:

✦ Desks must be rectangular to facilitate pairing
✦ 1.5-1.8 m x 0.8 m (5-6’ x 2’8”) is a good desk size
✦ 1.2 m (4’) space from desk to wall
✦ Design corner 3 x 3 m (10’ x 10’)
✦ Typical room size 7 x 8 m = 50 to 60 m² (23’ x 27’ = 550 to 650 sq.ft.)
✦ ScrumMaster can see the whole team
✦ Product Owner has a floating (not permanent) seat in the room
✦ Dry walls with internal windows create noise barriers and enough space for

information radiators without reducing light.

Team - 4
workstations

Team - 4
workstations

PO
SM

re
al

 w
in

do
w

dry wall
pa

ss
ag

e

do
or

(next team room)

(next team room)

dr
y

w
al

l

dry wall

design
corner

(n
ex

t t
ea

m
 ro

om
)

Metrics
It is reasonable to expect of any manager that she will want, within a reasonable
period, to be able to measure the results of a team or organisation’s transition to Agile
methods.

Happily, there are metrics that are easy and quick to implement. Based on my own
research and that of other Agile practitioners, I have described a set of metrics that
your team can and should implement [Hundermark 2009]. As soon as the team
understands the basics of the Scrum framework and has some idea of its velocity—
usually by the end of their third sprint—it is probably time to start measuring. In fact,
you can run customer and team surveys before you even start Scrum!

Without further explanation here, the set of metrics I recommend for initial
implementation is:

‣ Customer and team surveys
‣ Velocity chart
‣ Burnup / burndown chart
‣ Running automated tests
‣ Technical debt
‣ Work-in-process
‣ Story cycle time

And once you are able to put in some financial measure for business value, add the
following:

‣ Cost per sprint or story point
‣ Real value delivered
‣ ROI or NPV

22 · Do Better Scrum

space for notes

Coaching

What does a coach do?

‘Scrum coaching is defined as an engagement with one or more organizations/
teams during which the coach acts as a mentor or facilitator for those teams to
improve their understanding and application of Scrum to reach their stated
objectives. The engagement includes one-on-one and team mentoring, process
facilitation, organizational development, alignment consultation, and interaction
with all levels of leadership within an organization. It may also include mentoring
in methods related to the effectiveness of Scrum, principles described in the
Agile Manifesto, Lean principles, and Extreme Programming practices.’

Certified Scrum Coach Application, Scrum Alliance

The coach guides people in client organisations in the following ways:

‣ Advisory and consultation to enhance and speed up the self-discovery process
‣ Facilitation of client adoption, implementation, and learning Scrum
‣ Agile leadership, based on a servant leadership style
‣ Organisational development that enhances the client’s existing skills, resources,

and creativity.

Why does my organisation need coaching?

Software development and other kinds of work performed by knowledge workers
relies on tacit knowledge as opposed to formal or explicit knowledge. Tacit knowledge
is difficult to transmit from one person to another and is mostly gained through
personal experience. An example is learning to ride a bicycle.

The ScrumMaster role must provide process leadership to the rest of the Scrum Team
and to the rest of the organisation. Classroom training, such as the Certified
ScrumMaster course, is an insufficient means to gain the required tacit knowledge to
master Agile practices and the Scrum framework. The team and the organisation need
the skills of an experienced practitioner to guide them through the maze of challenges
they will inevitably face in transitioning to Agile.

The bottom line

When asked what they would change if they did their transition to Agile and Scrum
over, the most common comment heard from managers in organisations worldwide is
‘more coaching’!

 Do Better Scrum · 23

References
1. Cockburn, Alistair (2007). Agile Software Development: The Cooperative Game

(2nd edition). Addison Wesley

2. Cohn, Mike (2004). User Stories Applied. Addison Wesley.

3. Cohn, Mike (2006). Agile Estimating and Planning. Prentice Hall.

4. Gloger, Boris (2008). Heartbeat Retrospectives. http://borisgloger.com/
2008/04/24/heart-beat-retrospectives-1-introduction/.

5. Highsmith, Jim, et al (2001). Manifesto for Agile Software Development. http://
www.agilemanifesto.org/.

6. Hundermark, Peter (2009). Measuring for Results. http://www.scrumsense.com/
coaching/measuring-for-results.

7. Jeffries, Ron (2001). Card, Conversation, Confirmation. http://
www.xprogramming.com/xpmag/expCardConversationConfirmation.

8. Katzenberg, Jon R. And Smith, Douglas K. (2002). The Wisdom of Teams. Collins.

9. Nonaka, Ikujiro and Takeuchi, Hirotaka (1986). The New, New Product
Development Game. Harvard Business Review, Jan-Feb 1986.

10. Sliger, Michele and Broderick, Stacia (2008). The Software Project Manager’s
Bridge to Agility. Addison Wesley.

11. Schwaber, Ken (2007). The Enterprise and Scrum. Microsoft Press.

12. Schwaber, Ken (2009). Scrum Guide. http://www.scrumalliance.com/resources].

13. Teasley, Covi, Krishnan, & Olson (2000). How Does Radical Collocation Help a
Team Succeed? Proceedings of the 2000 ACM Conference on Computer
Supported Cooperative Work (pp. 339 - 346). New York: ACM.

14. Wake, William (2003). INVEST in Good Stories, and SMART Tasks. http://
xp123.com/xplor/xp0308/index.shtml

15. Yip, Jason (2006). It's Not Just Standing Up: Patterns of Daily Stand-up Meetings.
http://martinfowler.com/articles/itsNotJustStandingUp.html.

24 · Do Better Scrum

About Scrum Sense
Scrum Sense is a small Agile consultancy situated at the southern tip of
Africa providing coaching and training to people in organisations who have a
burning desire to find better ways to work together.

We offer the following services:

‣ A complete menu of coaching services that help you succeed in
transitioning your organisation to Agile and Scrum

• Starting Scrum

• Product Owner skills

• ScrumMaster skills

• New responsibilities of managers

• Enterprise adoption

‣ Public Certified ScrumMaster (CSM) training courses

‣ Public Certified Scrum Product Owner (CSPO) training courses

‣ Private uncertified Scrum training courses for team members (in
conjunction with coaching services)

‣ Private CSM and CSPO courses

‣ Software development skills training (in association with Factor10)

‣ Design of collaborative work spaces for collocated teams

‣ Assessment of Agile practices in organisations

‣ Agile evangelism talks to any interested audience (free)

www.scrumsense.com
mobile +27 842613680
skype peterhundermark
twitter peterhundermark

ScrumSense

