Linear algebra \＆polynomials：Scilab

Dr．Madhu N．Belur

Control \＆Computing group
Department of Electrical Engineering Indian Institute of Technology Bombay
Email：belur＠ee．iitb．ac．in

Outline

(1) Matrices
(2) Polynomials
(3) Fourier transform, polynomials, matrices

Today's focus

- Scilab is free.
- Matrix/loops syntax is same as for Matlab.
- Scilab provides all basic and many advanced tools.
- Today: linear algebra and polynomials: DFT/interpolation.

Today's focus

- Scilab is free.
- Matrix/loops syntax is same as for Matlab.
- Scilab provides all basic and many advanced tools.
- Today: linear algebra and polynomials: DFT/interpolation.

Today's focus

- Scilab is free.
- Matrix/loops syntax is same as for Matlab.
- Scilab provides all basic and many advanced tools.
- Today: linear algebra and polynomials: DFT/interpolation.

Today's focus

- Scilab is free.
- Matrix/loops syntax is same as for Matlab.
- Scilab provides all basic and many advanced tools.
- Today: linear algebra and polynomials: DFT/interpolation.

Defining a matrix

- $A=\left[\begin{array}{llll}1 & 3 & 4 & 6\end{array}\right]$
- $B=\left[\begin{array}{lllllll}1 & 3 & 4 & 6 ; 5 & 6 & 7 & 8\end{array}\right]$
- size(A), length(A), ones(A), zeros(B), zeros(3,5)
- quote (') for transpose of A

Defining a matrix

- $A=\left[\begin{array}{llll}1 & 3 & 4 & 6\end{array}\right]$
- $B=\left[\begin{array}{lllllll}1 & 3 & 4 & 6 ; 5 & 6 & 7 & 8\end{array}\right]$
- size(A), length(A), ones(A), zeros(B), zeros(3,5)

Defining a matrix

- $A=\left[\begin{array}{llll}1 & 3 & 4 & 6\end{array}\right]$
- $B=\left[\begin{array}{lllllll}1 & 3 & 4 & 6 ; 5 & 6 & 7 & 8\end{array}\right]$
- size(A), length(A), ones(A), zeros(B), zeros(3,5)
- quote (') for transpose of A

Defining a matrix

- $A=\left[\begin{array}{llll}1 & 3 & 4 & 6\end{array}\right]$
- $B=\left[\begin{array}{lllllll}1 & 3 & 4 & 6 ; 5 & 6 & 7 & 8\end{array}\right]$
- size(A), length(A), ones(A), zeros(B), zeros(3,5)
- quote (') for transpose of A

determinant/eigenvalues/trace

- $A=r a n d(3,3)$
- $\operatorname{det}(A), \operatorname{spec}(A), \operatorname{trace}(A)$
- sum(spec(A))
- if $\operatorname{sum}(\operatorname{spec}(A))==\operatorname{trace}(A)$ then
disn('yes, trace equals sum')
else
disp('no, trace is not sum ')
end
(clse disp('Trace is not sum within ==
tolerance')
$\operatorname{abs}(\operatorname{sum}(\operatorname{spec}(A))-\operatorname{trace}(A))<0.0001$
- Toor $F=\operatorname{abs}(\operatorname{prod}(\operatorname{spec}(A))-\operatorname{det}(A))<0.0001$

determinant/eigenvalues/trace

- $A=r a n d(3,3)$
- det(A), spec(A), trace(A)
- sum(spec(A))
- if $\operatorname{sum}(\operatorname{spec}(A))==t r a c e(A)$ then
disp('yes, trace equals sum')
else
disp('no, trace is not sum ')
end
(else disp('Trace is not sum within ==
tolerance')
$\operatorname{abs}(\operatorname{sum}(\operatorname{spec}(A))-\operatorname{trace}(A))<0.0001$
- Toor $F=\operatorname{abs}(\operatorname{prod}(\operatorname{spec}(A))-\operatorname{det}(A))<0.0001$

determinant/eigenvalues/trace

- $A=r a n d(3,3)$
- det(A), spec(A), trace(A)
- sum($\operatorname{spec}(\mathrm{A}))$
- if $\operatorname{sum}(\operatorname{spec}(A))==t r a c e(A)$ then disp('yes, trace equals sum')
else
disp('no, trace is not sum ')
end
(else disp('Trace is not sum within ==
tolerance')
abs (sum (spec(A)) - trace(A)) < 0.0001
- T_or_F = abs(prod(spec(A))-det(A))<0.0001

determinant/eigenvalues/trace

- $A=r a n d(3,3)$
- $\operatorname{det}(\mathrm{A}), \operatorname{spec}(\mathrm{A}), \operatorname{trace}(\mathrm{A})$
- sum($\operatorname{spec}(A))$
- if sum(spec(A))==trace(A) then disp('yes, trace equals sum')
else
disp('no, trace is not sum ')
end
(else disp('Trace is not sum within == tolerance')
abs(sum(spec(A)) - trace(A)) < 0.0001
- T_or_F $=$ abs(prod $(\operatorname{spec}(A))-\operatorname{det}(A))<0.0001$

determinant/eigenvalues/trace

- $A=r a n d(3,3)$
- $\operatorname{det}(A), \operatorname{spec}(A), \operatorname{trace}(A)$
- sum($\operatorname{spec}(A))$
- if sum(spec(A))==trace(A) then disp('yes, trace equals sum')
else
disp('no, trace is not sum ')
end
(else disp('Trace is not sum within == tolerance') abs(sum(spec(A)) - trace(A)) < 0.0001
- T_or_F = abs(prod(spec(A))-det(A))<0.0001

determinant/eigenvalues/trace

- $A=r a n d(3,3)$
- $\operatorname{det}(A), \operatorname{spec}(A), \operatorname{trace}(A)$
- sum($\operatorname{spec}(A))$
- if $\operatorname{sum}(\operatorname{spec}(A))==t r a c e(A)$ then disp('yes, trace equals sum')
else
disp('no, trace is not sum ')
end
(else disp('Trace is not sum within == tolerance') abs (sum(spec(A)) - trace(A)) < 0.0001
- T_or_F $=$ abs $(\operatorname{prod}(\operatorname{spec}(A))-\operatorname{det}(A))<0.0001$

(Block) diagonalize A?

Let A be a square matrix $(n \times n)$ with distinct eigenvalues $\lambda_{1}, \ldots \lambda_{n}$. Eigenvectors (column vectors) v_{1} to v_{n} are then independent.

$$
\left.\begin{array}{c}
A v_{1}=\lambda_{1} v_{1} \quad A v_{2}=\lambda_{2} v_{2}
\end{array}\right] A v_{n}=\lambda_{n} v_{n} .
$$

(Column scaling of vectors v_{1}, etc is just post-multiplication.)

- [evectors, evalues] $=\operatorname{spec}(A) \quad$ evalues=spec (A)

Inverse exists because of distint assumption on eigenvalues. Use 'bdiag' command for block diagonalization

(Block) diagonalize A?

Let A be a square matrix ($n \times n$) with distinct eigenvalues $\lambda_{1}, \ldots \lambda_{n}$. Eigenvectors (column vectors) v_{1} to v_{n} are then independent.

$$
A v_{1}=\lambda_{1} v_{1} \quad A v_{2}=\lambda_{2} v_{2} \quad \ldots A v_{n}=\lambda_{n} v_{n}
$$

$$
A\left[\begin{array}{llll}
v_{1} & v_{2} & \ldots & v_{n}
\end{array}\right]=\left[\begin{array}{llll}
v_{1} & v_{2} & \ldots & v_{n}
\end{array}\right]\left[\begin{array}{cccc}
\lambda_{1} & 0 & \ldots & 0 \\
0 & \lambda_{2} & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & \lambda_{n}
\end{array}\right]
$$

(Column scaling of vectors v_{1}, etc is just post-multiplication.)

- [evectors, evalues] $=\operatorname{spec}(A) \quad$ evalues=spec (A)
- inv(evectors)*A*evectors

Inverse exists because of distint assumption on eigenvalues. Use 'bdiag' command for block diagonalization

(Block) diagonalize A?

Let A be a square matrix ($n \times n$) with distinct eigenvalues $\lambda_{1}, \ldots \lambda_{n}$. Eigenvectors (column vectors) v_{1} to v_{n} are then independent.

$$
A v_{1}=\lambda_{1} v_{1} \quad A v_{2}=\lambda_{2} v_{2} \quad \ldots A v_{n}=\lambda_{n} v_{n}
$$

$$
A\left[\begin{array}{llll}
v_{1} & v_{2} & \ldots & v_{n}
\end{array}\right]=\left[\begin{array}{llll}
v_{1} & v_{2} & \ldots & v_{n}
\end{array}\right]\left[\begin{array}{cccc}
\lambda_{1} & 0 & \ldots & 0 \\
0 & \lambda_{2} & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & \lambda_{n}
\end{array}\right]
$$

(Column scaling of vectors v_{1}, etc is just post-multiplication.)

- [evectors, evalues] $=\operatorname{spec}(A) \quad$ evalues=spec (A)
- inv(evectors)*A*evectors

Inverse exists because of distint assumption on eigenvalues. Use 'bdiag' command for block diagonalization

Rank, SVD

- rank(A) svd(A)
- $[U, S, v]=\operatorname{svd}(A)$
- check u'-inv (u) $\mathrm{u} * \mathrm{~s} * \mathrm{v}-\mathrm{A} \quad \mathrm{u} * \mathrm{~s} * \mathrm{~V}^{\prime}-\mathrm{A}$
- $\operatorname{norm}\left(u * s * v^{\prime}-A\right)$

Rank, SVD

- rank(A) $\operatorname{svd}(A)$
- $[u, s, v]=\operatorname{svd}(A)$
- norm(u*s*v'-A)

Rank, SVD

- $\operatorname{rank}(A) \quad \operatorname{svd}(A)$
- $[u, s, v]=\operatorname{svd}(A)$
- check u'-inv(u) u*s*v-A

Rank, SVD

- $\operatorname{rank}(A) \quad \operatorname{svd}(A)$
- $[u, s, v]=\operatorname{svd}(A)$
- check u'-inv(u) u*s*v-A u*s*v'-A
- norm (u*s*v'-A)

The command 'find'

find([\%T \%F \%T \%F \%T \%F \%F]) gives 'indices' of TRUE's.
$x=\left[\begin{array}{llll}4 & 5 & 6 & 7\end{array}\right]$
$x<5.5$
true_indices_of_ $x=$ find $(x<5.5)$
$\mathrm{y}=\left[\begin{array}{lllll}5 & 6 & 7 & 8 & 0\end{array}\right.$-1]
y(true_indices_of_x)

Defining polynomials

Polynomials play a very central role in control theory: the transfer function is a ratio of two polynomials. Useful commands:

- $s=p o l y(0, ' s ')$
- s=poly(0,'s','roots')
- $p=s^{\wedge} 2+3 * s+2$ - p=poly([2 31$\left.], ' s^{\prime}, ' c o e f f '\right)$
- roots (p)
- $a=\left[\begin{array}{lll}1 & 2 & 3\end{array}\right]$
- w=poly (0,'w')
- horner ($\mathrm{p}, 5$)
- horner (p,a) • horner (p,a')
- horner (p, \%i*w)

Differentiation

- $p=\operatorname{poly}\left(\left[\begin{array}{llll}1 & 3 & 4 & -3\end{array}\right],{ }^{\prime} \mathbf{s}^{\prime}\right.$, , coeff')
- cfp=coeff(p) constant term first
- diffpcoff=cfp(2:length(cfp)).*[1:length(cfp)-1]
- diffp=poly(diffpcoff,'s', 'coeff')
- degree(p) can be used instead of length (cfp)-1
- Of course, derivat(p)

Differentiation

- $p=\operatorname{poly}\left(\left[\begin{array}{llll}1 & 3 & 4 & -3\end{array}\right],{ }^{\prime} \mathbf{s}^{\prime}\right.$, , coeff')
- cfp=coeff(p) constant term first
- diffpcoff=cfp (2:length(cfp)).*[1:length(cfp)-1]
- diffp=poly(diffpcoff,'s','coeff')
- degree(n) can be used instead of Iength ($c \in p$) -1
- Of course, derivat(p)

Differentiation

- p=poly([1 3 1 4 -3],'s','coeff')
- cfp=coeff(p) constant term first
- diffpcoff=cfp(2:length(cfp)).*[1:length(cfp)-1]
- diffp=poly(diffpcoff,'s','coeff')
- degree(p) can be used instead of length(cfp)-1
- Of course, derivat(p)

Differentiation

- p=poly([1 3 3 4 -3],'s','coeff')
- cfp=coeff(p) constant term first
- diffpcoff=cfp(2:length(cfp)).*[1:length(cfp)-1]
- diffp=poly(diffpcoff,'s','coeff')
- degree(p) can be used instead of length(cfp)-1
- Of course, derivat(p)

Differentiation

- p=poly([1 3 3 4 -3],'s','coeff')
- cfp=coeff(p) constant term first
- diffpcoff=cfp(2:length(cfp)).*[1:length(cfp)-1]
- diffp=poly(diffpcoff,'s','coeff')
- degree(p) can be used instead of length(cfp)-1

Differentiation

- p=poly([1 3 3 4 -3],'s','coeff')
- cfp=coeff(p) constant term first
- diffpcoff=cfp(2:length(cfp)).*[1:length(cfp)-1]
- diffp=poly(diffpcoff,'s','coeff')
- degree(p) can be used instead of length(cfp)-1
- Of course, derivat(p)

Coefficients and powers as vectors

A polynomial $p(s)$ of degree n can be written as

$$
p(s)=\left[\begin{array}{lllll}
1 & s & s^{2} & \cdots & s^{n}
\end{array}\right]\left[\begin{array}{c}
p_{0} \\
p_{1} \\
\vdots \\
p_{n}
\end{array}\right]=\left[\begin{array}{llll}
p_{0} & p_{1} & \cdots & p_{n}
\end{array}\right]\left[\begin{array}{c}
1 \\
s \\
\vdots \\
s^{n}
\end{array}\right]
$$

Suppose $p(s)$ has value b_{1} when $s=a_{1}$, i.e. $p\left(a_{1}\right)=b_{1}$. Then,

$$
b_{1}=\left[\begin{array}{lllll}
1 & a_{1} & a_{1}^{2} & \cdots & a_{1}^{n}
\end{array}\right]\left[\begin{array}{c}
p_{0} \\
p_{1} \\
\vdots \\
p_{n}
\end{array}\right]
$$

Similarly, for $b_{2}=p\left(a_{2}\right)$, etc.

Interpolation and Van der Monde matrix

Suppose $a_{1}, a_{2}, \ldots, a_{n}$ are n (distinct?) numbers. Construct the $n \times n$ matrix:

$$
V\left(a_{1}, \ldots, a_{n}\right):=\left[\begin{array}{ccccc}
1 & a_{1} & a_{1}^{2} & \cdots & a_{1}^{n-1} \\
1 & a_{2} & a_{2}^{2} & \cdots & a_{2}^{n-1} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & a_{n} & a_{n}^{2} & \cdots & a_{n}^{n-1}
\end{array}\right]
$$

This square matrix is nonsingular if and only if a_{i} are all distinct. Relation with interpolation?

Polynomial interpolation

Suppose $a_{1}, a_{2}, \ldots, a_{n}$ are n distinct numbers, and suppose b_{1}, b_{2}, \ldots, b_{n} are desired values an interpolating polynomial is required to have. 'Assume' there exists some $n-1$ degree polynomial $p(s)$ with $p(s)=p_{0}+p_{1} s+\cdots+p_{n-1} s^{n-1}$ such that $p\left(a_{1}\right)=b_{1}$, etc.

$$
\left[\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{n}
\end{array}\right]=\left[\begin{array}{ccccc}
1 & a_{1} & a_{1}^{2} & \cdots & a_{1}^{n-1} \\
1 & a_{2} & a_{2}^{2} & \cdots & a_{2}^{n-1} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & a_{n} & a_{n}^{2} & \cdots & a_{n}^{n-1}
\end{array}\right]\left[\begin{array}{c}
p_{0} \\
p_{1} \\
\vdots \\
p_{n-1}
\end{array}\right]
$$

Using nonsingularity, can find coefficients of $p(s)$ 'easily' by inverting the Van der Monde matrix.

Lagrange polynomial interpolation

Same problem as before.
Define
$\ell_{1}(s):=\left(s-a_{2}\right)\left(s-a_{3}\right) \cdots\left(s-a_{n}\right) \quad$ (all except $\left.a_{1}\right)$
$\ell_{2}(s):=\left(s-a_{1}\right)\left(s-a_{3}\right) \cdots\left(s-a_{n}\right) \quad$ (all except $\left.a_{2}\right)$ etc.
$\ell_{i}(s):=\left(s-a_{1}\right) \cdots\left(s-a_{i-1}\right)\left(s-a_{i+1}\right) \cdots\left(s-a_{n}\right)$
Of course, $\ell_{i}\left(a_{j}\right)=0$ if and only if $i \neq j$.
Now also normalize them so that $\ell_{i}\left(a_{i}\right)=1$. (Use horner)
Then required interpolating polynomial is
$b_{1} \ell_{1}(s)+b_{2} \ell_{2}(s)+\cdots+b_{n} \ell_{n}(s)$

Lagrange polynomial interpolation

Write a function that takes numbers $a_{1}, \ldots a_{n}$ and gives a polynomial with these numbers as roots.

Lagrange polynomial interpolation

Write a function that takes numbers $a_{1}, \ldots a_{n}$ and gives a polynomial with these numbers as roots.
Write a function that takes numbers $a_{1}, \ldots a_{n}$ and gives n polynomials: first polynomial has a_{2} upto a_{n} as roots, second has $a_{1}, a_{3}, \ldots a_{n}$ as roots, etc.
Use horner to 'normalize' these polynomials.

Lagrange polynomial interpolation

Write a function that takes numbers $a_{1}, \ldots a_{n}$ and gives a polynomial with these numbers as roots.
Write a function that takes numbers $a_{1}, \ldots a_{n}$ and gives n polynomials: first polynomial has a_{2} upto a_{n} as roots, second has $a_{1}, a_{3}, \ldots a_{n}$ as roots, etc.
Use horner to 'normalize' these polynomials.

Discrete Fourier Transform

For a periodic sequence: DFT (Discrete Fourier Transform) gives the frequency content.
Linear transformation on the input sequence.
Take signal values of just one period: finite dimensional signal (due to periodicity of N).
$X(k):=\sum_{n=0}^{N-1} x(n) e^{\frac{-2 \pi i k}{N} n}$ for $k=0, \ldots, N-1$ (analysis equation)
$e^{-\frac{2 \pi i}{N}}$ is the $N^{\text {th }}$ root of unity.
Inverse DFT for the synthesis equation. Normalization constants vary in the literature.

Discrete Fourier Transform

What is the matrix defining relating the DFT $X(k)$ of the signal $x(n)$? Define $\omega:=e^{-\frac{2 \pi i}{N}}$.

$$
\left[\begin{array}{c}
X(0) \\
X(1) \\
\vdots \\
X(N-1)
\end{array}\right]=\left[\begin{array}{ccccc}
1 & 1 & 1 & \cdots & 1 \\
1 & \omega & \omega^{2} & \cdots & \omega^{N-1} \\
1 & \omega^{2} & \omega^{4} & \cdots & \omega^{2 N-2} \\
1 & \vdots & \vdots & \ddots & \vdots \\
1 & \omega^{N-1} & \omega^{2 N-2} & \cdots & \omega^{(N-1)^{2}}
\end{array}\right]\left[\begin{array}{c}
x(0) \\
x(1) \\
\vdots \\
x(N-1)
\end{array}\right]
$$

(Note: $\omega^{N}=1$, etc.)
Check that the above $N \times N$ matrix has nonzero determinant. (Change of basis.) Moreover, columns are orthogonal. Orthonormal? (Normalization (by \sqrt{N}) not done yet.)

Discrete Fourier Transform and interpolation

Van der Monde matrix: closely related to interpolation problems Of course, inverse DFT is nothing but interpolation. Construct $p(s):=x_{0}+x_{1} s+x_{2} s^{2} \cdots+x_{N-1} s^{N-1}$
To obtain $X(k)$, evaluate p at $s=\omega^{k}$. $X(k)=p\left(\omega^{k}\right)$ horner command Given values of $p\left(\omega^{k}\right)$ for various ω^{k} (i.e., $X(k)$), find the coefficients of the polynomial $p(s)$: inverse DFT: interpolation of a polynomial to 'fit' given values at specified (complex) numbers.

Discrete Fourier Transform and interpolation

Van der Monde matrix: closely related to interpolation problems Of course, inverse DFT is nothing but interpolation.

horner command
Given values of $p\left(\omega^{k}\right)$ for various ω^{k} (ie., $X(k)$), find the coefficients of the polynomial $p(s)$: inverse DFT: interpolation of a polynomial to 'fit' given values at specified (complex) numbers.

Discrete Fourier Transform and interpolation

Van der Monde matrix: closely related to interpolation problems Of course, inverse DFT is nothing but interpolation. Construct $p(s):=x_{0}+x_{1} s+x_{2} s^{2} \cdots+x_{N-1} s^{N-1}$
 polynomial to 'fit' given values at specified (complex) numbers.

Discrete Fourier Transform and interpolation

Van der Monde matrix: closely related to interpolation problems Of course, inverse DFT is nothing but interpolation. Construct $p(s):=x_{0}+x_{1} s+x_{2} s^{2} \cdots+x_{N-1} s^{N-1}$ To obtain $X(k)$, evaluate p at $s=\omega^{k}$. $X(k)=p\left(\omega^{k}\right)$
horner command
Given values of $p\left(\omega^{k}\right)$ for various ω^{k} (i.e., $X(k)$), find the
coefficients of the polynomial $p(s)$: inverse DFT: interpolation of a polynomial to 'fit' given values at specified (complex) numbers.

Discrete Fourier Transform and interpolation

Van der Monde matrix: closely related to interpolation problems Of course, inverse DFT is nothing but interpolation. Construct $p(s):=x_{0}+x_{1} s+x_{2} s^{2} \cdots+x_{N-1} s^{N-1}$ To obtain $X(k)$, evaluate p at $s=\omega^{k}$. $X(k)=p\left(\omega^{k}\right)$ horner command
Given values of $p\left(\omega^{k}\right)$ for various ω^{k} (i.e., $X(k)$), find the coefficients of the polynomial $p(s)$: inverse DFT: interpolation of a polynomial to 'fit' given values at specified (complex) numbers.

Conclusions

- Matrices and polynomials provide rich source of problems
- Due to good computational tools available currently, the future lies in computational techniques
- Scilab provides handy tools
- We saw: for horner poly coeff roots find

