
AMTH142 Lecture 16

Least Squares

April 20, 2007

All the Scilab functions defined in this Lecture can be found in the file
l16.sci in the directory for this lecture.

Contents

16.1 Least Squares . 2
16.1.1 The General Problem 2

16.2 Linear Least Squares . 3
16.2.1 The Computational Problem 3
16.2.2 Over-Determined Linear Systems 4
16.2.3 Scilab . 5
16.2.4 Linear Functions . 8
16.2.5 Polynomials . 9
16.2.6 Analyzing Results . 11

1

16.1 Least Squares

In the previous lecture we looked at interpolation problems where we were
given some data (xi, yi), i = 1, . . . , n and we wanted to find a function
y = f(x) which interpolated the data so that yi = f(xi), i = 1, . . . , n. This
approach is only useful when the data are relatively free from error, otherwise
the interpolating function will exhibit the same kind of fluctuations that are
present in the data.

When we are dealing with data containing random errors the most com-
mon approach to fitting a function to data is the method of least squares.

16.1.1 The General Problem

The general least squares problem can be formulated as follows: given data
(xi, yi), i = 1, . . . , n and a function

y = f(x, a1, a2, . . . , ak)

depending on the parameters a1, . . . , ak, let

ri = yi − f(xi, a1, . . . , ak)

denote the distance between the graph of f(x, a1, a2, . . . , ak) and the data
point (xi, yi).

ri

(xi, yi)
f(x, a1, . . . , ak)

We want to find values for the parameters a1, . . . , ak which minimizes
the sum of squares of the ri

Minimize S2 =
n

∑

i=1

r2

i =
n

∑

i=1

(yi − f(xi, a1, . . . , ak))
2

Typically the number of parameters, k, is much smaller than the number of
data points, n.

2

Least squares problems are optimization problems. They are classified
as linear or nonlinear, depending on whether the function f(x, a1, . . . , ak)
depends linearly or non-linearly on the parameters a1, . . . , ak. Nonlinear
least squares problems are often difficult to solve and the theory behind
them is rather involved.

16.2 Linear Least Squares

The most common data fitting problem is fitting a straight line

y = ax + b

to data. This is an example of a linear least squares problem with two
parameters, in this case a and b, to be determined. More generally, fitting
a polynomial of degree k

y = a0 + a1x + a2x
2 + . . . akx

k

to data is another example of linear least squares. Although y is a nonlinear
function of x it is a linear function of the parameters a0, . . . , ak.

Linear least squares have a number of similarities to the general interpo-
lation problem discussed in the previous lecture. Like interpolation it can
be formulated as a problem in linear algebra.

16.2.1 The Computational Problem

Saying that the function f(x, a1, a2, . . . , ak) depends linearly on the param-
eters aj means that it can be written as a linear combination of some basis
functions f1(x), . . . , fk(x):

f(x, a1, a2, . . . , ak) = a1f1(x) + a2f2(x) + · · · + akfk(x)

The least squares approach leads us to minimizing the sum of squares

S2 =

n
∑

i=1

[yi − (a1f1(xi) + a2f2(xi) + · · · + akfk(xi))]
2

Note that the sum is over the data points, and once the data and basis
functions are given, the sum of squares S2 is a function of the parameters
a1, . . . , ak only.

The individual terms inside the square brackets

ri = yi − (a1f1(xi) + a2f2(xi) + · · · + akfk(xi))

can be written in vector/matrix form










r1

r2

...
rn











=











y1

y2

...
yn











−











f1(x1) f2(x1) . . . fk(x1)
f1(x2) f2(x2) . . . fk(x2)

...
...

...
...

f1(xn) f2(xn) . . . fk(xn)





















a1

a2

...
ak











3

The matrix in this equation is the same as the basis matrix used in interpo-
lation. Like interpolation our aim is to find the coefficients a1, . . . , ak, this
time to minimize the sum of squares of the ri. Note that when we have the
same number of parameters ai as data points, the problem reduces to an
interpolation problem. In this case we could find values for the parameters
so that all the ri are zero.

16.2.2 Over-Determined Linear Systems

The formulation of the linear least squares problem given above is closely
related to solving linear equations when there are more equations than un-
knowns. Consider a system of n linear equations in k unknowns:

b11a1 + b12a2 + . . . + b1kak = y1

b21a1 + b22a2 + . . . + b2kak = y2

...
...

...
...

bn1a1 + bn2a2 + . . . + bnkak = yn

In matrix form,
Ba = y

where B is a given n× k matrix, y is a given n vector, and a is the k vector
to be solved for.

When n > k then the system of equations will not, in general, have a
solution. For any vector a the residual is

r = Ba− y

When we have the same number of equations as unknowns, the residual is
zero for the solution vector a. When we have more equations than unknowns,
there is no vector a for which the residual is zero.

However what we can do in this case is to try to find a vector a for which
the residual is as small as possible. If we measure the size of the residual by
its norm

||r|| =

[

m
∑

i=1

r2

i

]
1

2

then minimizing the norm is equivalent to minimizing

S2 =
∑

r2

i

.
The linear least squares problem has exactly the same mathematical

structure. Given (xi, yi), i = 1, . . . , n and basis functions f1(x), . . . , fk(x)

4

form the basis matrix

B =











f1(x1) f2(x1) . . . fk(x1)
f1(x2) f2(x2) . . . fk(x2)

...
...

...
...

f1(xn) f2(xn) . . . fk(xn)











then we want to find the coefficients ai of the basis functions minimize the
norm of the residual

r = Ba − y.

16.2.3 Scilab

In Scilab least squares problems, which as we have seen are equivalent to
over-determined linear systems, are solved with the backslash operator \ the
same way as linear equations are solved.

Example

We will look at example of fitting a straight line to data. Our basis functions
are f1(x) = 1 and f2(x) = x and the basis matrix is











1 x1

1 x2

...
...

1 xn











For our example we will generate some x and y data where

y = −3x + 5 + random perturbation

-->x1 = (0:9)’;

-->y1 = -3*x1 + 5 + rand(x1, ’normal’);

-->plot2d(x1, y1, style = -1)

0 1 2 3 4 5 6 7 8 9
−25

−20

−15

−10

−5

0

5

5

To fit a straight line to this data we first create the the basis matrix:

-->aa1 = [ones(x1) x1]

aa1 =

! 1. 0. !

! 1. 1. !

! 1. 2. !

! 1. 3. !

! 1. 4. !

! 1. 5. !

! 1. 6. !

! 1. 7. !

! 1. 8. !

! 1. 9. !

Solving with the backslash operator

-->a = aa1\y1

a =

! 5.6400247 !

! - 3.0027612 !

The components of the solution, a, are the coefficients of the basis functions
f1(x) = 1 and f2(x) = x, so our least squares straight line is

y = −3.003x + 5.640.

We can now evaluate and plot the straight line

-->xx = 0:0.01:9;

-->yy = a(1) + a(2)*xx;

-->plot2d(xx,yy)

0 1 2 3 4 5 6 7 8 9
−25

−20

−15

−10

−5

0

5

10

6

Example

Here is another example. Again we will generate some data, but this time
using trigonometric functions:

-->x2 = (0:20)’;

-->y2 = 4*sin(x2)+3*sin(2*x2)+2*sin(4*x2)+0.5*rand(x2,’normal’);

-->plot2d(x2, y2, style = -1)

0 2 4 6 8 10 12 14 16 18 20
−8

−6

−4

−2

0

2

4

6

8

In this problem our basis functions will be

f1(x) = sin(x) f2(x) = sin(2x) f3(x) = sin(4x)

Our computations follow the same pattern as before:

-->aa2 = [sin(x2) sin(2*x2) sin(4*x2)];

-->a = aa2\y2

a =

! 3.9648784 !

! 2.8008647 !

! 2.0763987 !

-->xx = 0:0.01:20;

-->yy = a(1)*sin(xx) + a(2)*sin(2*xx) + a(3)*sin(4*xx);

-->plot2d(xx,yy)

7

0 2 4 6 8 10 12 14 16 18 20
−8

−6

−4

−2

0

2

4

6

8

16.2.4 Linear Functions

As we have seen, fitting a linear function to data is a simple application of
linear least squares. It is handy to have a Scilab function to do this for us.

Given data in vectors x and y we first construct the basis matrix, in this
case the 2 column matrix

aa = [ones(x) x]

(we have assumed x is a column vector), and then solve the least-squares
problem to get the coefficients

a = aa\y

Here is our function:

function a = linfit(x, y)

aa = [ones(x) x]

a = aa\y

endfunction

Example

We will use the same data x1 and y1 as before

-->a = linfit(x1,y1)

a =

! 5.6400247 !

! - 3.0027612 !

(and, of course, get the same result.)

8

16.2.5 Polynomials

This is another application of linear least squares. To fit a polynomial of
degree k

y = a0 + a1x + . . . + akx
k

to a data set we use the basis matrix

aa = [ones(x) x x.^2 x.^k]

Again we will write a Scilab function to do the job for us. Not surpris-
ingly it is similar to the function for polynomial interpolation in Lecture 15.

function a = polyfit(x, y, k)

n = length(x)

aa = zeros(n, k+1)

aa(:,1) = ones(x);

for i = 1:k // loop to construct the basis matrix

aa(:,i+1) = x.^i

end

a = aa\y

endfunction

The function polyeval from Lecture 15 can be used to evaluate the
polynomial.

Example

Again we will generate some noisy data:

-->x3 = (0:0.1:2)’;

-->y3 = x3.^5 - 3*x3.^3 - 5*x3 + 7 + 0.5*rand(x3,’normal’);

-->plot2d(x3,y3,style = -1)

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
−4

−2

0

2

4

6

8

9

-->p = polyfit(x3,y3,5)

p =

! 7.3497182 !

! - 10.903575 !

! 20.310461 !

! - 29.978715 !

! 15.022939 !

! - 1.9582651 !

-->xx = (0:0.01:2)’;

-->yy = polyeval(p,xx);

-->plot2d(xx,yy)

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
−4

−2

0

2

4

6

8

We can compare to the original unperturbed polynomial:

-->pp = [7 -5 0 -3 0 1]’

pp =

! 7. !

! - 5. !

! 0. !

! - 3. !

! 0. !

! 1. !

-->yy1 = polyeval(pp,xx);

-->plot2d(xx,yy1)

10

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
−4

−2

0

2

4

6

8

Although some of the coefficients of the two polynomials are quite dif-
ferent, the graphs are quite similar. Put another way, we have two quite
different polynomials which both give a reasonable fit to the data.

16.2.6 Analyzing Results

The residuals, that is the differences between the data and the fitted func-
tion, are good way to determine to determine how well a function fits a set
of data. For our example these are:

-->res3 = y3 - polyeval(p,x3);

-->plot2d(x3,res3)

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
−1.0

−0.8

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

The graph of the residuals should look random with no discernible pat-
tern as in this example.

11

