
www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Big Data Glossary

Pete Warden

Beijing • Cambridge • Farnham • Köln • Sebastopol • Tokyo

www.allitebooks.com

http://www.allitebooks.org

Big Data Glossary
by Pete Warden

Copyright © 2011 Pete Warden. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (http://my.safaribooksonline.com). For more information, contact our
corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editor: Mike Loukides
Production Editor: Teresa Elsey

Cover Designer: Karen Montgomery
Interior Designer: David Futato
Illustrator: Robert Romano

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of
O’Reilly Media, Inc. Big Data Glossary, the image of an elephant seal, and related trade dress are trade-
marks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc., was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors assume
no responsibility for errors or omissions, or for damages resulting from the use of the information con-
tained herein.

ISBN: 978-1-449-31459-0

[LSI]

1315581712

www.allitebooks.com

http://my.safaribooksonline.com/?portal=oreilly
mailto:corporate@oreilly.com
http://www.allitebooks.org

Table of Contents

Preface . vii

1. Terms . 1
Document-Oriented 1
Key/Value Stores 2
Horizontal or Vertical Scaling 2
MapReduce 3
Sharding 3

2. NoSQL Databases . 5
MongoDB 6
CouchDB 6
Cassandra 7
Redis 7
BigTable 8
HBase 9
Hypertable 9
Voldemort 9
Riak 10
ZooKeeper 10

3. MapReduce . 11
Hadoop 11
Hive 12
Pig 13
Cascading 13
Cascalog 13
mrjob 13
Caffeine 14
S4 14
MapR 14

iii

www.allitebooks.com

http://www.allitebooks.org

Acunu 15
Flume 15
Kafka 15
Azkaban 15
Oozie 16
Greenplum 16

4. Storage . 17
S3 17
Hadoop Distributed File System 18

5. Servers . 21
EC2 21
Google App Engine 22
Elastic Beanstalk 23
Heroku 23

6. Processing . 25
R 25
Yahoo! Pipes 25
Mechanical Turk 26
Solr/Lucene 27
ElasticSearch 27
Datameer 27
BigSheets 27
Tinkerpop 28

7. NLP . 29
Natural Language Toolkit 29
OpenNLP 29
Boilerpipe 30
OpenCalais 30

8. Machine Learning . 31
WEKA 31
Mahout 31
scikits.learn 32

9. Visualization . 33
Gephi 33
GraphViz 34
Processing 35

iv | Table of Contents

www.allitebooks.com

http://www.allitebooks.org

Protovis 35
Fusion Tables 36
Tableau 37

10. Acquisition . 39
Google Refine 39
Needlebase 39
ScraperWiki 40

11. Serialization . 41
JSON 41
BSON 41
Thrift 42
Avro 42
Protocol Buffers 42

Table of Contents | v

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Preface

There’s been a massive amount of innovation in data tools over the last few years,
thanks to a few key trends:

Learning from the Web
Techniques originally developed by website developers coping with scaling issues
are increasingly being applied to other domains.

CS+?=$$$
Google has proven that research techniques from computer science can be effective
at solving problems and creating value in many real-world situations. That’s led to
increased interest in cross-pollination and investment in academic research from
commercial organizations.

Cheap hardware
Now that machines with a decent amount of processing power can be hired for
just a few cents an hour, many more people can afford to do large-scale data pro-
cessing. They can’t afford the traditional high prices of professional data software,
though, so they’ve turned to open source alternatives.

These trends have led to a Cambrian explosion of new tools, which means that when
you’re planning a new data project, you have a lot to choose from. This guide aims to
help you make those choices by describing each tool from the perspective of a developer
looking to use it in an application. Wherever possible, this will be from my firsthand
experiences or from those of colleagues who have used the systems in production en-
vironments. I’ve made a deliberate choice to include my own opinions and impressions,
so you should see this guide as a starting point for exploring the tools, not the final
word. I’ll do my best to explain what I like about each service, but your tastes and
requirements may well be quite different.

Since the goal is to help experienced engineers navigate the new data landscape, this
guide only covers tools that have been created or risen to prominence in the last few
years. For example, Postgres is not covered because it’s been widely used for over a
decade, but its Greenplum derivative is newer and less well-known, so it is included.

vii

www.allitebooks.com

http://www.allitebooks.org

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program elements
such as variable or function names, databases, data types, environment variables,
statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter-
mined by context.

This icon signifies a tip, suggestion, or general note.

This icon indicates a warning or caution.

Using Code Examples
This book is here to help you get your job done. In general, you may use the code in
this book in your programs and documentation. You do not need to contact us for
permission unless you’re reproducing a significant portion of the code. For example,
writing a program that uses several chunks of code from this book does not require
permission. Selling or distributing a CD-ROM of examples from O’Reilly books does
require permission. Answering a question by citing this book and quoting example
code does not require permission. Incorporating a significant amount of example code
from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “Big Data Glossary by Pete Warden
(O’Reilly). Copyright 2011 Pete Warden, 978-1-449-31459-0.”

If you feel your use of code examples falls outside fair use or the permission given above,
feel free to contact us at permissions@oreilly.com.

viii | Preface

www.allitebooks.com

mailto:permissions@oreilly.com
http://www.allitebooks.org

Safari® Books Online
Safari Books Online is an on-demand digital library that lets you easily
search over 7,500 technology and creative reference books and videos to
find the answers you need quickly.

With a subscription, you can read any page and watch any video from our library online.
Read books on your cell phone and mobile devices. Access new titles before they are
available for print, and get exclusive access to manuscripts in development and post
feedback for the authors. Copy and paste code samples, organize your favorites, down-
load chapters, bookmark key sections, create notes, print out pages, and benefit from
tons of other time-saving features.

O’Reilly Media has uploaded this book to the Safari Books Online service. To have full
digital access to this book and others on similar topics from O’Reilly and other pub-
lishers, sign up for free at http://my.safaribooksonline.com.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at:

http://www.oreilly.com/catalog/9781449314590

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about our books, courses, conferences, and news, see our website
at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Preface | ix

http://my.safaribooksonline.com/?portal=oreilly
http://www.oreilly.com/catalog/9781449314590
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

CHAPTER 1

Terms

These new tools need some shorthand labels to describe their properties, and since
they’re likely to be unfamiliar to traditional database users, I’ll start off with a few
definitions.

Document-Oriented
In a traditional relational database, the user begins by specifying a series of column
types and names for a table. Information is then added as rows of values, with each of
those named columns as a cell of each row. You can’t have additional values that
weren’t specified when you created the table, and every value must be present, even if
it’s as a NULL value.

Document stores instead let you enter each record as a series of names with associated
values, which you can picture being like a JavaScript object, a Python dictionary, or a
Ruby hash. You don’t specify ahead of time what names will be in each table using a
schema. In theory, each record could contain a completely different set of named values,
though in practice, the application layer often relies on an informal schema, with the
client code expecting certain named values to be present.

The key advantage of this document-oriented approach is its flexibility. You can add
or remove the equivalent of columns with no penalty, as long as the application layer
doesn’t rely on the values that were removed. A good analogy is the difference between
languages where you declare the types of variables ahead of time, and those where the
type is inferred by the compiler or interpreter. You lose information that can be used
to automatically check correctness and optimize for performance, but it becomes a lot
easier to prototype and experiment.

1

Key/Value Stores
The memcached system introduced a lot of web programmers to the power of treating
a data store like a giant associative array, reading and writing values based purely on a
unique key. It leads to a very simple interface, with three primitive operations to get
the data associated with a particular key, to store some data against a key, and to delete
a key and its data. Unlike relational databases, with a pure key/value store, it’s impos-
sible to run queries, though some may offer extensions, like the ability to find all the
keys that match a wild-carded expression. This means that the application code has to
handle building any complex operations out of the primitive calls it can make to the
store.

Why would any developer want to do that extra work? With more complex databases,
you’re often paying a penalty in complexity or performance for features you may not
care about, like full ACID compliance. With key/value stores, you’re given very basic
building blocks that have very predictable performance characteristics, and you can
create the more complex operations using the same language as the rest of your
application.

A lot of the databases listed here try to retain the simplicity of a pure key/value store
interface, but with some extra features added to meet common requirements. It seems
likely that there’s a sweet spot of functionality that retains some of the advantages of
minimal key/value stores without requiring quite as much duplicated effort from the
application developer.

Horizontal or Vertical Scaling
Traditional database architectures are designed to run well on a single machine, and
the simplest way to handle larger volumes of operations is to upgrade the machine with
a faster processor or more memory. That approach to increasing speed is known as
vertical scaling. More recent data processing systems, such as Hadoop and Cassandra,
are designed to run on clusters of comparatively low-specification servers, and so the
easiest way to handle more data is to add more of those machines to the cluster. This
horizontal scaling approach tends to be cheaper as the number of operations and the
size of the data increases, and the very largest data processing pipelines are all built on
a horizontal model. There is a cost to this approach, though. Writing distributed data
handling code is tricky and involves tradeoffs between speed, scalability, fault toler-
ance, and traditional database goals like atomicity and consistency.

2 | Chapter 1: Terms

http://memcached.org/
http://en.wikipedia.org/wiki/ACID

MapReduce
MapReduce is an algorithm design pattern that originated in the functional program-
ming world. It consists of three steps. First, you write a mapper function or script that
goes through your input data and outputs a series of keys and values to use in calculating
the results. The keys are used to cluster together bits of data that will be needed to
calculate a single output result. The unordered list of keys and values is then put
through a sort step that ensures that all the fragments that have the same key are next
to one another in the file. The reducer stage then goes through the sorted output and
receives all of the values that have the same key in a contiguous block.

That may sound like a very roundabout way of building your algorithms, but its prime
virtue is that it removes unplanned random accesses, with all scattering and gathering
handled in the sorting phase. Even on single machines, this boosts performance, thanks
to the increased locality of memory accesses, but it also allows the process to be split
across a large number of machines easily, by dealing with the input in many independ-
ent chunks and partitioning the data based on the key.

Hadoop is the best-known public system for running MapReduce algorithms, but many
modern databases, such as MongoDB, also support it as an option. It’s worthwhile
even in a fairly traditional system, since if you can write your query in a MapReduce
form, you’ll be able to run it efficiently on as many machines as you have available.

Sharding
Any database that’s spread across multiple machines needs some scheme to decide
which machines a given piece of data should be stored on. A sharding system makes
this decision for each row in a table, using its key. In the simplest case, the application
programmer will specify an explicit rule to use for sharding. For example, if you had a
ten machine cluster and a numerical key, you might use the last decimal digit of the
key to decide which machine to store data on. Since both the storing and retrieval code
knows about this rule, when you need to get the row it’s possible to go directly to the
machine that holds it.

The biggest problems with sharding are splitting the data evenly across machines and
dealing with changes in the size of the cluster. Using the same example, imagine that
the numerical keys often end in zero; that will lead to an extremely unbalanced distri-
bution where a single machine is overused and becomes a bottleneck. If the cluster size
is expanded from ten to fifteen machines, we could switch to a modulo fifteen scheme
for assigning data, but it would require a wholesale shuffling of all the data on the
cluster.

To ease the pain of these problems, more complex schemes are used to split up the
data. Some of these rely on a central directory that holds the locations of particular
keys. This level of indirection allows data to be moved between machines when a

Sharding | 3

particular shard grows too large (to rebalance the distribution), at the cost of requiring
an extra lookup in the directory for each operation. The directory’s information is
usually fairly small and reasonably static, though, so it’s a good candidate for local
caching, as long as the infrequent changes are spotted.

Another popular approach is the use of consistent hashing for the sharding. This tech-
nique uses a small table splitting the possible range of hash values into ranges, with one
assigned to each shard. The lookup data needed by clients is extremely lightweight,
with just a couple of numerical values per node, so it can be shared and cached effi-
ciently, but it has enough flexibility to allow fast rebalancing of the value distributions
when nodes are added and removed, or even just when one node becomes overloaded,
unlike fixed modulo functions.

4 | Chapter 1: Terms

http://michaelnielsen.org/blog/consistent-hashing/

CHAPTER 2

NoSQL Databases

A few years ago, web programmers started to use the memcached system to temporarily
store data in RAM, so frequently used values could be retrieved very quickly, rather
than relying on a slower path accessing the full database from disk. This coding pattern
required all of the data accesses to be written using only key/value primitives, initially
in addition to the traditional SQL queries on the main database. As developers got more
comfortable with the approach, they started to experiment with databases that used a
key/value interface for the persistent storage as well as the cache, since they already
had to express most of their queries in that form anyway. This is a rare example of the
removal of an abstraction layer, since the key/value interface is less expressive and
lower-level than a query language like SQL. These systems do require more work from
an application developer, but they also offer a lot more flexibility and control over the
work the database is performing. The cut-down interface also makes it easier for da-
tabase developers to create new and experimental systems to try out new solutions to
tough requirements like very large-scale, widely distributed data sets or high through-
put applications.

This widespread demand for solutions, and the comparative ease of developing new
systems, has led to a flowering of new databases. The main thing they have in common
is that none of them support the traditional SQL interface, which has led to the move-
ment being dubbed NoSQL. It’s a bit misleading, though, since almost every produc-
tion environment that they’re used in also has an SQL-based database for anything that
requires flexible queries and reliable transactions, and as the products mature, it’s likely
that some of them will start supporting the language as an option. If “NoSQL” seems
too combative, think of it as “NotOnlySQL.” These are all tools designed to trade the
reliability and ease-of-use of traditional databases for the flexibility and performance
required by new problems developers are encountering.

With so many different systems appearing, such a variety of design tradeoffs, and such
a short track record for most, this list is inevitably incomplete and somewhat subjective.
I’ll be providing a summary of my own experiences with and impressions of each da-
tabase, but I encourage you to check out their official web pages to get the most up-to-
date and complete view.

5

http://memcached.org/

MongoDB
Mongo, whose name comes from "humongous”, is a database aimed at developers with
fairly large data sets, but who want something that’s low maintenance and easy to work
with. It’s a document-oriented system, with records that look similar to JSON objects
with the ability to store and query on nested attributes. From my own experience, a
big advantage is the proactive support from the developers employed by 10gen, the
commercial company that originated and supports the open source project. I’ve always
had quick and helpful responses both on the IRC channel and mailing list, something
that’s crucial when you’re dealing with comparatively young technologies like these.

It supports automatic sharding and MapReduce operations. Queries are written in
JavaScript, with an interactive shell available, and bindings for all of the other popular
languages.

• Quickstart documentation

CouchDB
CouchDB is similar in many ways to MongoDB, as a document-oriented database with
a JavaScript interface, but it differs in how it supports querying, scaling, and versioning.
It uses a multiversion concurrency control approach, which helps with problems that
require access to the state of data at various times, but it does involve more work on
the client side to handle clashes on writes, and periodic garbage collection cycles have
to be run to remove old data. It doesn’t have a good built-in method for horizontal
scalability, but there are various external solutions like BigCouch, Lounge, and Pil-
low to handle splitting data and processing across a cluster of machines.

You query the data by writing JavaScript MapReduce functions called views, an ap-
proach that makes it easy for the system to do the processing in a distributed way. Views
offer a lot of power and flexibility, but they can be a bit overwhelming for simple queries.

• Getting started with CouchDB

6 | Chapter 2: NoSQL Databases

http://www.mongodb.org
http://www.snailinaturtleneck.com/blog/2010/08/23/history-of-mongodb/
http://www.10gen.com/
irc://irc.freenode.net/#mongodb
http://groups.google.com/group/mongodb-user
http://www.mongodb.org/display/DOCS/Sharding
http://www.mongodb.org/display/DOCS/MapReduce
http://www.mongodb.org/display/DOCS/Quickstart
http://couchdb.apache.org
https://github.com/cloudant/bigcouch
http://tilgovi.github.com/couchdb-lounge/
https://github.com/khellan/Pillow
https://github.com/khellan/Pillow
http://net.tutsplus.com/tutorials/getting-started-with-couchdb/

Cassandra
Originally an internal Facebook project, Cassandra was open sourced a few years ago
and has become the standard distributed database for situations where it’s worth in-
vesting the time to learn a complex system in return for a lot of power and flexibility.
Traditionally, it was a long struggle just to set up a working cluster, but as the project
matures, that has become a lot easier.

It’s a distributed key/value system, with highly structured values that are held in a
hierarchy similar to the classic database/table levels, with the equivalents being key-
spaces and column families. It’s very close to the data model used by Google’s BigTable,
which you can find described in “BigTable” on page 8. By default, the data is sharded
and balanced automatically using consistent hashing on key ranges, though other
schemes can be configured. The data structures are optimized for consistent write per-
formance, at the cost of occasionally slow read operations. One very useful feature is
the ability to specify how many nodes must agree before a read or write operation
completes. Setting the consistency level allows you to tune the CAP tradeoffs for your
particular application, to prioritize speed over consistency or vice versa.

The lowest-level interface to Cassandra is through Thrift, but there are friendlier clients
available for most major languages. The recommended option for running queries is
through Hadoop. You can install Hadoop directly on the same cluster to ensure locality
of access, and there’s also a distribution of Hadoop integrated with Cassandra available
from DataStax.

There is a command-line interface that lets you perform basic administration tasks, but
it’s quite bare bones. It is recommended that you choose initial tokens when you first
set up your cluster, but otherwise the decentralized architecture is fairly low-mainte-
nance, barring major problems.

• Up and running with Cassandra

Redis
Two features make Redis stand out: it keeps the entire database in RAM, and its values
can be complex data structures. Though the entire dataset is kept in memory, it’s also
backed up on disk periodically, so you can use it as a persistent database. This approach
does offer fast and predictable performance, but speed falls off a cliff if the size of your
data expands beyond available memory and the operating system starts paging virtual
memory to handle accesses. This won’t be a problem if you have small or predictably
sized storage needs, but it does require a bit of forward planning as you’re developing
applications. You can deal with larger data sets by clustering multiple machines to-
gether, but the sharding is currently handled at the client level. There is an experimental
branch of the code under active development that supports clustering at the server level.

Redis | 7

http://cassandra.apache.org
http://www.julianbrowne.com/article/viewer/brewers-cap-theorem
http://thrift.apache.org/
http://wiki.apache.org/cassandra/ClientOptions
http://wiki.apache.org/cassandra/HadoopSupport
http://www.datastax.com/brisk
http://www.datastax.com/
http://petewarden.typepad.com/searchbrowser/2011/07/cassandra-initial-tokens-table.html
http://blog.evanweaver.com/2009/07/06/up-and-running-with-cassandra/
http://redis.io
http://antirez.com/post/redis-presharding.html
http://blog.zawodny.com/2011/02/26/redis-sharding-at-craigslist/
http://antirez.com/post/2-4-and-other-news.html
http://antirez.com/post/2-4-and-other-news.html

The support for complex data structures is impressive, with a large number of list and
set operations handled quickly on the server side. It makes it easy to do things like
appending to the end of a value that’s a list, and then trim the list so that it only holds
the most recent 100 items. These capabilities do make it easier to limit the growth of
your data than it would be in most systems, as well as making life easier for application
developers.

• Interactive tutorial

BigTable
BigTable is only available to developers outside Google as the foundation of the App
Engine datastore. Despite that, as one of the pioneering alternative databases, it’s worth
looking at.

It has a more complex structure and interface than many NoSQL datastores, with a
hierarchy and multidimensional access. The first level, much like traditional relational
databases, is a table holding data. Each table is split into multiple rows, with each row
addressed with a unique key string. The values inside the row are arranged into cells,
with each cell identified by a column family identifier, a column name, and a timestamp,
each of which I’ll explain below.

The row keys are stored in ascending order within file chunks called shards. This en-
sures that operations accessing continuous ranges of keys are efficient, though it does
mean you have to think about the likely order you’ll be reading your keys in. In one
example, Google reversed the domain names of URLs they were using as keys so that
all links from similar domains were nearby; for example, com.google.maps/index.html
was near com.google.www/index.html.

You can think of a column family as something like a type or a class in a programming
language. Each represents a set of data values that all have some common properties;
for example, one might hold the HTML content of web pages, while another might be
designed to contain a language identifier string. There’s only expected to be a small
number of these families per table, and they should be altered infrequently, so in prac-
tice they’re often chosen when the table is created. They can have properties, con-
straints, and behaviors associated with them.

Column names are confusingly not much like column names in a relational database.
They are defined dynamically, rather than specified ahead of time, and they often hold
actual data themselves. If a column family represented inbound links to a page, the
column name might be the URL of the page that the link is from, with the cell contents
holding the link’s text. The timestamp allows a given cell to have multiple versions over
time, as well as making it possible to expire or garbage collect old data.

A given piece of data can be uniquely addressed by looking in a table for the full iden-
tifier that conceptually looks like row key, then column family, then column name, and

8 | Chapter 2: NoSQL Databases

www.allitebooks.com

http://try.redis-db.com/
http://labs.google.com/papers/bigtable.html
http://code.google.com/appengine/docs/python/datastore/overview.html
http://code.google.com/appengine/docs/python/datastore/overview.html
http://www.allitebooks.org

finally timestamp. You can easily read all the values for a given row key in a particular
column family, so you could actually think of the column family as being the closest
comparison to a column in a relational database.

As you might expect from Google, BigTable is designed to handle very large data loads
by running on big clusters of commodity hardware. It has per-row transaction guar-
antees, but it doesn’t offer any way to atomically alter larger numbers of rows. It uses
the Google File System as its underlying storage, which keeps redundant copies of all
the persistent files so that failures can be recovered from.

HBase
HBase was designed as an open source clone of Google’s BigTable, so unsurprisingly
it has a very similar interface, and it relies on a clone of the Google File System called
HDFS. It supports the same data structure of tables, row keys, column families, column
names, timestamps, and cell values, though it is recommended that each table have no
more than two or three families for performance reasons.

HBase is well integrated with the main Hadoop project, so it’s easy to write and read
to the database from a MapReduce job running on the system. One thing to watch out
for is that the latency on individual reads and writes can be comparatively slow, since
it’s a distributed system and the operations will involve some network traffic. HBase is
at its best when it’s accessed in a distributed fashion by many clients. If you’re doing
serialized reads and writes you may need to think about a caching strategy.

• Understanding HBase

Hypertable
Hypertable is another open source clone of BigTable. It’s written in C++, rather than
Java like HBase, and has focused its energies on high performance. Otherwise, its in-
terface follows in BigTable’s footsteps, with the same column family and timestamping
concepts.

Voldemort
An open source clone of Amazon’s Dynamo database created by LinkedIn, Voldemort
has a classic three-operation key/value interface, but with a sophisticated backend ar-
chitecture to handle running on large distributed clusters. It uses consistent hashing to
allow fast lookups of the storage locations for particular keys, and it has versioning
control to handle inconsistent values. A read operation may actually return multiple
values for a given key if they were written by different clients at nearly the same time.
This then puts the burden on the application to take some sensible recovery actions
when it gets multiple values, based on its knowledge of the meaning of the data being

Voldemort | 9

http://hbase.apache.org
http://hadoop.apache.org/hdfs/
http://hadoop.apache.org/
http://jimbojw.com/wiki/index.php?title=Understanding_Hbase_and_BigTable
http://www.hypertable.org
http://project-voldemort.com
http://s3.amazonaws.com/AllThingsDistributed/sosp/amazon-dynamo-sosp2007.pdf

written. The example that Amazon uses is a shopping cart, where the set of items could
be unioned together, losing any deliberate deletions but retaining any added items,
which obviously makes sense—from a revenue perspective, at least!

Riak
Like Voldemort, Riak was inspired by Amazon’s Dynamo database, and it offers a key/
value interface and is designed to run on large distributed clusters. It also uses consistent
hashing and a gossip protocol to avoid the need for the kind of centralized index server
that BigTable requires, along with versioning to handle update conflicts. Querying is
handled using MapReduce functions written in either Erlang or JavaScript. It’s open
source under an Apache license, but there’s also a closed source commercial version
with some special features designed for enterprise customers.

ZooKeeper
When you’re running a service distributed across a large cluster of machines, even tasks
like reading configuration information, which are simple on single-machine systems,
can be hard to implement reliably. The ZooKeeper framework was originally built at
Yahoo! to make it easy for the company’s applications to access configuration infor-
mation in a robust and easy-to-understand way, but it has since grown to offer a lot of
features that help coordinate work across distributed clusters. One way to think of it
is as a very specialized key/value store, with an interface that looks a lot like a filesystem
and supports operations like watching callbacks, write consensus, and transaction IDs
that are often needed for coordinating distributed algorithms.

This has allowed it to act as a foundation layer for services like LinkedIn’s Norbert, a
flexible framework for managing clusters of machines. ZooKeeper itself is built to run
in a distributed way across a number of machines, and it’s designed to offer very fast
reads, at the expense of writes that get slower the more servers are used to host the
service.

• Implementing primitives with ZooKeeper

10 | Chapter 2: NoSQL Databases

http://wiki.basho.com
http://zookeeper.apache.org
https://github.com/rhavyn/norbert
https://cwiki.apache.org/confluence/display/ZOOKEEPER/Tutorial

CHAPTER 3

MapReduce

In the traditional relational database world, all processing happens after the informa-
tion has been loaded into the store, using a specialized query language on highly struc-
tured and optimized data structures. The approach pioneered by Google, and adopted
by many other web companies, is to instead create a pipeline that reads and writes to
arbitrary file formats, with intermediate results being passed between stages as files,
with the computation spread across many machines. Typically based around the Map-
Reduce approach to distributing work, this approach requires a whole new set of tools,
which I’ll describe below.

Hadoop
Originally developed by Yahoo! as a clone of Google’s MapReduce infrastructure, but
subsequently open sourced, Hadoop takes care of running your code across a cluster
of machines. Its responsibilities include chunking up the input data, sending it to each
machine, running your code on each chunk, checking that the code ran, passing any
results either on to further processing stages or to the final output location, performing
the sort that occurs between the map and reduce stages and sending each chunk of that
sorted data to the right machine, and writing debugging information on each job’s
progress, among other things.

As you might guess from that list of requirements, it’s quite a complex system, but
thankfully it has been battle-tested by a lot of users. There’s a lot going on under the
hood, but most of the time, as a developer, you only have to supply the code and data,
and it just works. Its popularity also means that there’s a large ecosystem of related
tools, some that making writing individual processing steps easier, and others that
orchestrate more complex jobs that require many inputs and steps. As a novice user,
the best place to get started is by learning to write a streaming job in your favorite
scripting language, since that lets you ignore the gory details of what’s going on behind
the scenes.

11

http://hadoop.apache.org

As a mature project, one of Hadoop’s biggest strengths is the collection of debugging
and reporting tools it has built in. Most of these are accessible through a web interface
that holds details of all running and completed jobs and lets you drill down to the error
and warning log files.

• Running Hadoop on Ubuntu Linux

Hive
With Hive, you can program Hadoop jobs using SQL. It’s a great interface for anyone
coming from the relational database world, though the details of the underlying im-
plementation aren’t completely hidden. You do still have to worry about some differ-
ences in things like the most optimal way to specify joins for best performance and
some missing language features. Hive does offer the ability to plug in custom code for
situations that don’t fit into SQL, as well as a lot of tools for handling input and output.
To use it, you set up structured tables that describe your input and output, issue load
commands to ingest your files, and then write your queries as you would in any other
relational database. Do be aware, though, that because of Hadoop’s focus on large-
scale processing, the latency may mean that even simple jobs take minutes to complete,
so it’s not a substitute for a real-time transactional database.

12 | Chapter 3: MapReduce

http://www.michael-noll.com/tutorials/running-hadoop-on-ubuntu-linux-single-node-cluster/
http://hive.apache.org

Pig
The Apache Pig project is a procedural data processing language designed for Hadoop.
In contrast to Hive’s approach of writing logic-driven queries, with Pig you specify a
series of steps to perform on the data. It’s closer to an everyday scripting language, but
with a specialized set of functions that help with common data processing problems.
It’s easy to break text up into component ngrams, for example, and then count up how
often each occurs. Other frequently used operations, such as filters and joins, are also
supported. Pig is typically used when your problem (or your inclination) fits with a
procedural approach, but you need to do typical data processing operations, rather
than general purpose calculations. Pig has been described as “the duct tape of Big
Data” for its usefulness there, and it is often combined with custom streaming code
written in a scripting language for more general operations.

Cascading
Most real-world Hadoop applications are built of a series of processing steps, and Cas-
cading lets you define that sort of complex workflow as a program. You lay out the
logical flow of the data pipeline you need, rather than building it explicitly out of Map-
Reduce steps feeding into one another. To use it, you call a Java API, connecting objects
that represent the operations you want to perform into a graph. The system takes that
definition, does some checking and planning, and executes it on your Hadoop cluster.
There are a lot of built-in objects for common operations like sorting, grouping, and
joining, and you can write your own objects to run custom processing code.

Cascalog
Cascalog is a functional data processing interface written in Clojure. Influenced by the
old Datalog language and built on top of the Cascading framework, it lets you write
your processing code at a high level of abstraction while the system takes care of as-
sembling it into a Hadoop job. It makes it easy to switch between local execution on
small amounts of data to test your code and production jobs on your real Hadoop
cluster. Cascalog inherits the same approach of input and output taps and processing
operations from Cascading, and the functional paradigm seems like a natural way of
specifying data flows. It’s a distant descendant of the original Clojure wrapper for Cas-
cading, cascading-clojure.

mrjob
Mrjob is a framework that lets you write the code for your data processing, and then
transparently run it either locally, on Elastic MapReduce, or on your own Hadoop
cluster. Written in Python, it doesn’t offer the same level of abstraction or built-in

mrjob | 13

http://pig.apache.org
http://blog.linkedin.com/2010/07/01/linkedin-apache-pig/
http://blog.linkedin.com/2010/07/01/linkedin-apache-pig/
http://www.cascading.org
https://github.com/nathanmarz/cascalog
https://github.com/getwoven/cascading-clojure
https://github.com/Yelp/mrjob

operations as the Java-based Cascading. The job specifications are defined as a series
of map and reduce steps, each implemented as a Python function. It is great as a frame-
work for executing jobs, even allowing you to attach a debugger to local runs to really
understand what’s happening in your code.

Caffeine
Even though no significant technical information has been published on it, I’m includ-
ing Google’s Caffeine project, as there’s a lot of speculation that it’s a replacement for
the MapReduce paradigm. From reports and company comments, it appears that Goo-
gle is using a new version of the Google File System that supports smaller files and
distributed masters. It also sounds like the company has moved away from the batch
processing approach to building its search index, instead using a dynamic database
approach to make updating faster. There’s no indication that Google’s come up with
a new algorithmic approach that’s as widely applicable as MapReduce, though I am
looking forward to hearing more about the new architecture.

S4
Yahoo! initially created the S4 system to make decisions about choosing and positioning
ads, but the company open sourced it after finding it useful for processing arbitrary
streams of events. S4 lets you write code to handle unbounded streams of events, and
runs it distributed across a cluster of machines, using the ZooKeeper framework to
handle the housekeeping details. You write data sources and handlers in Java, and S4
handles broadcasting the data as events across the system, load-balancing the work
across the available machines. It’s focused on returning results fast, with low latency,
for applications like building near real-time search engines on rapidly changing content.
This sets it apart from Hadoop and the general MapReduce approach, which involves
synchronization steps within the pipeline, and so some degree of latency. One thing to
be aware of is that S4 uses UDP and generally offers no delivery guarantees for the data
that’s passing through the pipeline. It usually seems possible to adjust queue sizes to
avoid data loss, but it does put the burden of tuning to reach the required level of
reliability on the application developer.

MapR
MapR is a commercial distribution of Hadoop aimed at enterprises. It includes its own
file systems that are a replacement for HDFS, along with other tweaks to the framework,
like distributed name nodes for improved reliability. The new file system aims to offer
increased performance, as well as easier backups and compatibility with NFS to make
it simpler to transfer data in and out. The programming model is still the standard

14 | Chapter 3: MapReduce

http://s4.io
http://www.mapr.com

Hadoop one; the focus is on improving the infrastructure surrounding the core frame-
work to make it more appealing to corporate customers.

Acunu
Like MapR, Acunu is a new low-level data storage layer that replaces the traditional
file system, though its initial target is Cassandra rather than Hadoop. By writing a
kernel-level key/value store called Castle, which has been open-sourced, the creators
are able to offer impressive speed boosts in many cases. The data structures behind the
performance gains are also impressive. Acunu also offers some of the traditional ben-
efits of a commercially supported distribution, such as automatic configuration and
other administration tools.

Flume
One very common use of Hadoop is taking web server or other logs from a large number
of machines, and periodically processing them to pull out analytics information. The
Flume project is designed to make the data gathering process easy and scalable, by
running agents on the source machines that pass the data updates to collectors, which
then aggregate them into large chunks that can be efficiently written as HDFS files. It’s
usually set up using a command-line tool that supports common operations, like tailing
a file or listening on a network socket, and has tunable reliability guarantees that let
you trade off performance and the potential for data loss.

Kafka
Kafka is a comparatively new project for sending large numbers of events from pro-
ducers to consumers. Originally built to connect LinkedIn’s website with its backend
systems, it’s somewhere between S4 and Flume in its functionality. Unlike S4, it’s per-
sistent and offers more safeguards for delivery than Yahoo!’s UDP-based system, but
it tries to retain its distributed nature and low latency. It can be used in a very similar
way to Flume, keeping its high throughput, but with a more flexible system for creating
multiple clients and an underlying architecture that’s more focused on parallelization.
Kafka relies on ZooKeeper to keep track of its distributed processing.

Azkaban
The trickiest part of building a working system using these new data tools is the inte-
gration. The individual services need to be tied together into sequences of operations
that are triggered by your business logic, and building that plumbing is surprisingly
time consuming. Azkaban is an open source project from LinkedIn that lets you define
what you want to happen as a job flow, possibly made up of many dependent steps,

Azkaban | 15

http://www.acunu.com/
http://www.acunu.com/blogs/tom-wilkie/castle-storage-engine-oscon/
https://bitbucket.org/acunu/fs.hg/
http://arxiv.org/abs/1103.4282
https://github.com/cloudera/flume
http://incubator.apache.org/kafka/index.html
http://sna-projects.com/azkaban/

and then handles a lot of the messy housekeeping details. It keeps track of the log
outputs, spots errors and emails about errors as they happen, and provides a friendly
web interface so you can see how your jobs are getting on. Jobs are created as text files,
using a very minimal set of commands, with any complexity expected to reside in the
Unix commands or Java programs that the step calls.

Oozie
Oozie is a job control system that’s similar to Azkaban, but exclusively focused on
Hadoop. This isn’t as big a difference as you might think, since most Azkaban uses I’ve
run across have also been for Hadoop, but it does mean that Oozie’s integration is a
bit tighter, especially if you’re using the Yahoo! distribution of both. Oozie also sup-
ports a more complex language for describing job flows, allowing you to make runtime
decisions about exactly which steps to perform, all described in XML files. There’s also
an API that you can use to build your own extensions to the system’s functionality.
Compared to Azkaban, Oozie’s interface is more powerful but also more complex, so
which you choose should depend on how much you need Oozie’s advanced features.

Greenplum
Though not strictly a NoSQL database, the Greenplum system offers an interesting way
of combining a flexible query language with distributed performance. Built on top of
the Postgres open source database, it adds in a distributed architecture to run on a
cluster of multiple machines, while retaining the standard SQL interface. It automati-
cally shards rows across machines, by default based on a hash of a table’s primary key,
and works to avoid data loss both by using RAID drive setups on individual servers and
by replicating data across machines. It’s normally deployed on clusters of machines
with comparatively fast processors and large amounts of RAM, in contrast to the pat-
tern of using commodity hardware that’s more common in the web world.

16 | Chapter 3: MapReduce

http://yahoo.github.com/oozie/
http://www.greenplum.com

CHAPTER 4

Storage

Large-scale data processing operations access data in a way that traditional file systems
are not designed for. Data tends to be written and read in large batches, multiple meg-
abytes at once. Efficiency is a higher priority than features like directories that help
organize information in a user-friendly way. The massive size of the data also means
that it needs to be stored across multiple machines in a distributed way. As a result,
several specialized technologies have appeared that support those needs and trade off
some of the features of general purpose file systems required by POSIX standards.

S3
Amazon’s S3 service lets you store large chunks of data on an online service, with an
interface that makes it easy to retrieve the data over the standard web protocol, HTTP.
One way of looking at it is as a file system that’s missing some features like appending,
rewriting or renaming files, and true directory trees. You can also see it as a key/value
database available as a web service and optimized for storing large amounts of data in
each value.

To give a concrete example, you could store the data for a .png image into the system
using the API provided by Amazon. You’d first have to create a bucket, which is a bit
like a global top-level directory that’s owned by one user, and which must have a unique
name. You’d then supply the bucket name, a file name (which can contain slashes, and
so may appear like a file in a subdirectory), the data itself, and any metadata to create
the object.

If you specified that the object was publicly accessible, you’d then be able to access it
through any web browser at an address like http://yourbucket.s3.amazonaws.com/your/
file/name.png. If you supplied the right content-type in the metadata, it would be dis-
played as an image to your browser.

I use S3 a lot because it’s cheap, well-documented, reliable, fast, copes with large
amounts of traffic, and is very easy to access from almost any environment, thanks to
its support of HTTP for reads. In some applications I’ve even used it as a crude database,

17

http://aws.amazon.com/s3

when I didn’t need the ability to run queries and was only storing a comparatively small
number of large data objects. It also benefits from Amazon’s investment in user inter-
faces and APIs that have encouraged the growth of an ecosystem of tools.

• s3cmd: a command-line client for S3

• s3sync: the equivalent of rsync for S3

Hadoop Distributed File System
The Hadoop Distributed File System (HDFS) is designed to support applications like
MapReduce jobs that read and write large amounts of data in batches, rather than more
randomly accessing lots of small files. It abandons some POSIX requirements to achieve
this, but unlike S3, it does support renaming and moving files, along with true direc-
tories. You can only write to a file once at creation time, to make it easier to handle
coherency problems when the data’s hosted on a cluster of machines, so that cached
copies of the file can be read from any of the machines that have one, without having
to check if the contents have changed. The client software stores up written data in a
temporary local file, until there’s enough to fill a complete HDFS block. All files are
stored in these blocks, with a default size of 64 MB. Once enough data has been buf-
fered, or the write operation is closed, the local data is sent across the network and
written to multiple servers in the cluster, to ensure it isn’t lost if there’s a hardware
failure.

18 | Chapter 4: Storage

www.allitebooks.com

http://s3tools.org/s3cmd
http://s3sync.net/wiki
http://hadoop.apache.org/hdfs
http://www.allitebooks.org

To simplify the architecture, HDFS uses a single name node to keep track of which files
are stored where. This does mean there’s a single point of failure and potential per-
formance bottleneck. In typical data processing applications, the metadata it’s respon-
sible for is small and not accessed often, so in practice this doesn’t usually cause per-
formance problems. The manual intervention needed for a name node failure can be a
headache for system maintainers, though.

Hadoop Distributed File System | 19

CHAPTER 5

Servers

“The cloud” is a very vague term, but there’s been a real change in the availability of
computing resources. Rather than the purchase or long-term leasing of a physical ma-
chine that used to be the norm, now it’s much more common to rent computers that
are being run as virtual instances. This makes it economical for the provider to offer
very short-term rentals of flexible numbers of machines, which is ideal for a lot of data
processing applications. Being able to quickly fire up a large cluster makes it possible
to deal with very big data problems on a small budget. Since there are many companies
with different approaches to this sort of server rental, I’ll look at what they offer from
the perspective of a data processing developer.

EC2
In simple terms, EC2 lets you rent computers by the hour, with a choice of different
memory and CPU configurations. You get network access to a complete Linux or Win-
dows server that you can log into as root, allowing you to install software and flexibly
configure the system. Under the hood these machines are actually hosted virtually, with
many running on each physical server in the data center, which keeps the prices low.
There are many other companies offering virtualized servers, but Amazon’s EC2 stands
out for data processing applications because of the ecosystem that’s grown up around
it. It has a rich set of third-party virtual machine snapshots to start with and easy inte-
gration with S3, both through a raw interface and through the Elastic Block Storage
(EBS) wrapper, which uses S3 to back something that looks like a traditional filesystem.
The Elastic MapReduce service makes it easy to create temporary Hadoop clusters. You
can even upload very large data sets from physical media that you post to Amazon!

The biggest drawback to hosting your computation on the service is that you have little
control over the true hardware layout of any clusters you create, thanks to the virtual-
ization layer. I often find that my Hadoop jobs are bottlenecked by network commu-
nication and data transfer, and so it makes more sense to use a larger number of lower-
spec machines, rather than the somewhat more capable servers you’d probably choose
for an in-house Hadoop cluster. Amazon’s spot instance auction pricing model is a

21

http://aws.amazon.com/ec2
http://aws.amazon.com/ec2/spot-instances/

great fit for background data processing jobs. You can often get servers at a third of the
normal cost, and the loss of machines if demand picks up is an inconvenience, not a
disaster.

• EC2 for poets

Google App Engine
With Google’s App Engine service, you write your web-serving code in either Java, a
JVM language, or Python, and it takes care of running the application in a scalable way
so that it can cope with large numbers of simultaneous requests. Unlike with EC2 or
traditional web hosting, you have very limited control over the environment your code
is running in. This makes it easy to distribute across a lot of machines to handle heavy
loads, since only your code needs to be transferred, but it does make it tough to run
anything that needs flexible access to the underlying system. With traditional hosting,
all your code is running on a single machine, and so you are naturally restricted to the
storage and CPU time available on that machine. Since App Engine can run your code
across a potentially unrestricted number of machines, Google has had to introduce a
fairly complex system of quotas and billing to control applications’ use of those re-
sources. Since the system was originally designed to host web services handling a large
number of short-lived page requests, some of these quota limits can be tough for data
processing applications. For a long time, no request could run for more than 30 seconds,
and though this has now been lifted for background requests, other restrictions still
make it tough to run data processing or transfer-intensive code.

• Getting started with App Engine

22 | Chapter 5: Servers

http://scripting.com/opmlHowto/dave/ec2/
http://code.google.com/appengine
http://code.google.com/appengine/docs/python/gettingstarted/

Elastic Beanstalk
Elastic Beanstalk is a layer on top of the EC2 service that takes care of setting up an
automatically scaling cluster of web servers behind a load balancer, allowing developers
to deploy Java-based applications without worrying about a lot of the housekeeping
details. This high-level approach makes it similar to App Engine and Heroku, but be-
cause it’s just a wrapper for EC2, you can also log directly into the machines that the
code is running on, to debug problems or tweak the environment. It’s still fundamen-
tally designed around the needs of frontend web applications, though, so most data
processing problems aren’t a good fit for its approach.

• Getting started with Elastic Beanstalk

Heroku
Heroku hosts Ruby web applications, offering a simple deployment process, a lot of
free and paid plug-ins, and easy scalability. To ensure that your code can be quickly
deployed across a large number of machines, there are some restrictions on things like
access to the underlying filesystem, but in general the environment is more flexible than
App Engine. You can install almost any Ruby gem, even those with native code, and
you get a real SQL database rather than Google’s scalable but restrictive alternative
datastore. Heroku is still focused on the needs of frontend applications, though, so it’s
likely to be restricted to providing the interface to a data processing application. In
particular, you may well hit its hard 300 MB memory limit if you start to perform
operations that are too RAM intensive.

Heroku | 23

http://aws.amazon.com/elasticbeanstalk
http://blog.teamextension.com/getting-started-with-aws-elastic-beanstalk-179
http://www.heroku.com

• Deploying a Heroku app

24 | Chapter 5: Servers

http://web.elctech.com/?p=413

CHAPTER 6

Processing

Getting the concise, valuable information you want from a sea of data can be challeng-
ing, but there’s been a lot of progress around systems that help you turn your datasets
into something that makes sense. Because there are so many different barriers, the tools
range from rapid statistical analysis systems to enlisting human helpers.

R
The R project is both a specialized language and a toolkit of modules aimed at anyone
working with statistics. It covers everything from loading your data to running sophis-
ticated analyses on it and then either exporting or visualizing the results. The interactive
shell makes it easy to experiment with your data, since you can try out a lot of different
approaches very quickly. The biggest downside from a data processing perspective is
that it’s designed to work with datasets that fit within a single machine’s memory. It is
possible to use it within Hadoop as another streaming language, but a lot of the most
powerful features require access to the complete dataset to be effective. R makes a great
prototyping platform for designing solutions that need to run on massive amounts of
data, though, or for making sense of the smaller-scale results of your processing.

Yahoo! Pipes
It’s been several years since Yahoo! released the Pipes environment, but it’s still an
unsurpassed tool for building simple data pipelines. It has a graphical interface where
you drag and drop components, linking them together into flows of processing oper-
ations. A lot of Yahoo!’s interesting APIs are exposed as building blocks, as well as
components for importing web pages and RSS feeds and outputting the results as dy-
namic feeds. As a free tool aimed at technically minded consumers, Pipes can’t handle
massive datasets, but it’s the equivalent of duct tape for a lot of smaller tasks. Similar
but more specialized tools like Alpine Miner have had a lot of success in the commercial
world, so I’m hopeful that the Pipes style of interface will show up more often in data
processing applications.

25

http://www.r-project.org
http://pipes.yahoo.com/pipes
http://alpineminer.org/

• Using YQL and Yahoo! Pipes together

Mechanical Turk
The original Mechanical Turk was a fraudulent device that appeared to be a chess-
playing robot but was actually controlled by a hidden midget. Amazon’s service exploits
the same principle, recognizing that there are some mental tasks that it’s most effective
to ask real humans to perform. It can cost as little as a few cents per operation, de-
pending on the duration and complexity of each small job you want performed. The
low cost can make it feel a bit exploitative of the workers, but it’s an incredibly powerful
way of introducing genuine intelligence into your pipeline. Often you’ll have a crucial
problem that’s not yet reliably solvable with AI but can be quickly done by a person.
For example, you could feed in photos to get estimates of gender and age, something
that you just can’t do reliably using pure code. You do have to put in more thought
and planning before you integrate it into your pipeline, since even at comparatively
cheap rates it’s a lot more expensive per operation. It can’t be beaten as a get-out-of-
jail-free card for when you encounter stubbornly AI-complete problems, though.

• RTurk: a Ruby library for Mechanical Turk tasks

26 | Chapter 6: Processing

http://developer.yahoo.com/blogs/ydn/posts/2011/01/quick-tutorial-yql-pipes-working-together/
https://www.mturk.com/mturk/welcome
https://github.com/mdp/rturk

Solr/Lucene
Lucene is a Java library that handles indexing and searching large collections of docu-
ments, and Solr is an application that uses the library to build a search engine server.
Originally separate projects, they were recently merged into a single Apache open
source team. It’s designed to handle very big amounts of data, with a sharding archi-
tecture that means it will scale horizontally across a cluster of machines. It also has a
very flexible plug-in architecture and configuration system, and it can be integrated
with a lot of different data sources. These features, along with a well-tested code base,
make it a great choice for anyone who needs to solve a large-scale search problem.

ElasticSearch
Like Solr, ElasticSearch is a search engine service that’s built on top of Lucene. It’s a
younger project, aimed more at people in the web world (in contrast to Solr’s heavy
use in enterprises). It allows you to update the search index with much lower latency,
has a more minimal REST/JSON-based interface and configuration options, and scales
horizontally in a more seamless way. It doesn’t yet have the community or number of
contributors of the more established project, though, and it is missing some of the
broader features that Solr offers, so it’s worth evaluating both.

Datameer
Though it’s aimed at the well-known business intelligence market, Datameer is inter-
esting because it uses Hadoop to power its processing. It offers a simplified program-
ming environment for its operators to specify the kind of analysis they want, and then
handles converting that into MapReduce jobs behind the scenes. It also has some user-
friendly data importing tools, as well as visualization options. It’s a sign of where data
processing solutions are headed, as we get better at building interfaces and moving to
higher and more powerful abstraction levels.

BigSheets
IBM’s BigSheets is a web application that lets nontechnical users gather unstructured
data from online and internal sources and analyze it to create reports and visualizations.
Like Datameer, it uses Hadoop behind the scenes to handle very large amounts of data,
along with services like OpenCalais to cope with extracting useful structured informa-
tion from a soup of unstructured text. It’s aimed at users who are comfortable with a
spreadsheet interface rather than traditional developers, so it’s not possible to use it as
part of a custom solution, but does offer ideas on how to make your data processing
application accessible to those sort of ordinary users.

BigSheets | 27

http://lucene.apache.org/solr
http://www.elasticsearch.org
http://www.datameer.com
http://www-01.ibm.com/software/ebusiness/jstart/bigsheets/index.html

Tinkerpop
A group of developers working on open source graph software, Tinkerpop has pro-
duced an integrated suite of tools. A bit like the LAMP stack for graph processing,
they’re designing a set of services that work well together to perform common opera-
tions like interfacing to specialized graph databases, writing traversal queries, and ex-
posing the whole system as a REST-based server. If you’re dealing with graph data,
Tinkerpop will give you some high-level interfaces that can be much more convenient
to deal with than raw graph databases.

28 | Chapter 6: Processing

www.allitebooks.com

http://tinkerpop.com/
http://www.allitebooks.org

CHAPTER 7

NLP

Natural language processing (NLP) is a subset of data processing that’s so crucial, it
earned its own section. Its focus is taking messy, human-created text and extracting
meaningful information. As you can imagine, this chaotic problem domain has
spawned a large variety of approaches, with each tool most useful for particular kinds
of text. There’s no magic bullet that will understand written information as well as a
human, but if you’re prepared to adapt your use of the results to handle some errors
and don’t expect miracles, you can pull out some powerful insights.

Natural Language Toolkit
The NLTK is a collection of Python modules and datasets that implement common
natural language processing techniques. It offers the building blocks that you need to
build more complex algorithms for specific problems. For example, you can use it to
break up texts into sentences, break sentences into words, stem words by removing
common suffixes (like -ing from English verbs), or use machine-readable dictionaries
to spot synonyms. The framework is used by most researchers in the field, so you’ll
often find cutting-edge approaches included as modules or as algorithms built from its
modules. There are also a large number of compatible datasets available, as well as
ample documentation.

NLTK isn’t aimed at developers looking for an off-the-shelf solution to domain-specific
problems. Its flexibility does mean you need a basic familiarity with the NLP world
before you can create solutions for your own problems. It’s not a prepackaged solution
like Boilerpipe or OpenCalais.

OpenNLP
Written in Java, OpenNLP is an alternative to NLTK for language processing. It has a
stronger focus on prebuilt solutions, with models available that make it easy to do tasks
like extracting times, people, and organization names from text. This approach does

29

http://www.nltk.org
http://nltk.googlecode.com/svn/trunk/nltk_data/index.xml
http://www.nltk.org/documentation
http://incubator.apache.org/opennlp
http://opennlp.sourceforge.net/models-1.5/

make it less appealing as a teaching framework, but the ease of integration with Java
means it’s a lot more suitable for applications written in the language. It does contain
all of the standard components you need to build your own language-processing code,
breaking the raw text down into sentences and words, and classifying those compo-
nents using a variety of techniques.

Boilerpipe
One of the hardest parts of analyzing web pages is removing the navigation links,
headers, footers, and sidebars to leave the meaningful content text. If all of that boil-
erplate is left in, the analysis will be highly distorted by repeated irrelevant words and
phrases from those sections. Boilerpipe is a Java framework that uses an algorithmic
approach to spotting the actual content of an HTML document, and so makes a great
preprocessing tool for any web content. It’s aimed at pages that look something like a
news story, but I’ve found it works decently for many different types of sites.

• A live demonstration of the service

OpenCalais
OpenCalais is a web API that takes a piece of text, spots the names of entities it knows
about, and suggests overall tags. It’s a mature project run by Thomson Reuters and is
widely used. In my experience, it tends to be strongest at understanding terms and
phrases that you might see in formal news stories, as you might expect from its heritage.
It’s definitely a good place to start when you need a semantic analysis of your content,
but there are still some reasons you might want to look into alternatives. There is a
50,000 per-day limit on calls, and 100K limit on document sizes for the standard API.
This is negotiable with the commercial version, but the overhead is one reason to con-
sider running something on a local cluster instead for large volumes of data. You may
also need to ensure that the content you’re submitting is not sensitive, though the
service does promise not to retain any of it. There may also be a set of terms or phrases
unique to your problem domain that’s not covered by the service. In that case, a hand-
rolled parser built on NLTK or OpenNLP could be a better solution.

30 | Chapter 7: NLP

http://code.google.com/p/boilerpipe
http://boilerpipe-web.appspot.com/
http://www.opencalais.com/
http://www.opencalais.com/privacy
http://www.opencalais.com/privacy

CHAPTER 8

Machine Learning

Another important processing category, machine learning systems automate decision
making on data. They use training information to deal with subsequent data points,
automatically producing outputs like recommendations or groupings. These systems
are especially useful when you want to turn the results of a one-off data analysis into a
production service that will perform something similar on new data without supervi-
sion. Some of the most famous uses of these techniques are features like Amazon’s
product recommendations.

WEKA
WEKA is a Java-based framework and GUI for machine learning algorithms. It provides
a plug-in architecture for researchers to add their own techniques, with a command-
line and window interface that makes it easy to apply them to your own data. You can
use it to do everything from basic clustering to advanced classification, together with
a lot of tools for visualizing your results. It is heavily used as a teaching tool, but it also
comes in extremely handy for prototyping and experimenting outside of the classroom.
It has a strong set of preprocessing tools that make it easy to load your data in, and
then you have a large library of algorithms at your fingertips, so you can quickly try out
ideas until you find an approach that works for your problem. The command-line
interface allows you to apply exactly the same code in an automated way for production.

Mahout
Mahout is an open source framework that can run common machine learning algo-
rithms on massive datasets. To achieve that scalability, most of the code is written as
parallelizable jobs on top of Hadoop. It comes with algorithms to perform a lot of
common tasks, like clustering and classifying objects into groups, recommending items
based on other users’ behaviors, and spotting attributes that occur together a lot. In
practical terms, the framework makes it easy to use analysis techniques to implement
features such as Amazon’s “People who bought this also bought” recommendation

31

http://www.cs.waikato.ac.nz/ml/weka
http://mahout.apache.org

engine on your own site. It’s a heavily used project with an active community of de-
velopers and users, and it’s well worth trying if you have any significant number of
transaction or similar data that you’d like to get more value out of.

• Introducing Mahout

• Using Mahout with Cassandra

scikits.learn
It’s hard to find good off-the-shelf tools for practical machine learning. Many of the
projects are aimed at students and researchers who want access to the inner workings
of the algorithms, which can be off-putting when you’re looking for more of a black
box to solve a particular problem. That’s a gap that scikits.learn really helps to fill. It’s
a beautifully documented and easy-to-use Python package offering a high-level inter-
face to many standard machine learning techniques. It collects most techniques that
fall under the standard definition of machine learning (taking a training dataset and
using that to predict something useful about data received later) and offers a common
way of connecting them together and swapping them out. This makes it a very fruitful
sandbox for experimentation and rapid prototyping, with a very easy path to using the
same code in production once it’s working well.

• Face Recognition using scikits.learn

32 | Chapter 8: Machine Learning

http://www.ibm.com/developerworks/java/library/j-mahout/
http://www.acunu.com/blogs/sean-owen/recommending-cassandra/
http://scikit-learn.sourceforge.net/stable/
http://scikit-learn.sourceforge.net/stable/tutorial.html
http://scikit-learn.sourceforge.net/stable/auto_examples/applications/face_recognition.html

CHAPTER 9

Visualization

One of the best ways to communicate the meaning of data is by extracting the important
parts and presenting them graphically. This is helpful both for internal use, as an ex-
ploration technique to spot patterns that aren’t obvious from the raw values, and as a
way to succinctly present end users with understandable results. As the Web has turned
graphs from static images to interactive objects, the lines between presentation and
exploration have blurred. The possibilities of the new medium have led to some of the
fantastic new tools I cover in this section.

Gephi
Gephi is an open source Java application that creates network visualizations from raw
edge and node graph data. It’s very useful for understanding social network informa-
tion; one of the project’s founders was hired by LinkedIn, and Gephi is now used for
LinkedIn visualizations. There are several different layout algorithms, each with mul-
tiple parameters you can tweak to arrange the positions of the nodes in your data. If
there are any manual changes you want to make, to either the input data or the posi-
tioning, you can do that through the data laboratory, and once you’ve got your basic
graph laid out, the preview tab lets you customize the exact appearance of the rendered
result. Though Gephi is best known for its window interface, you can also script a lot
of its functions from automated backend tools, using its toolkit library.

33

http://gephi.org
http://gephi.org/toolkit/

GraphViz
GraphViz is a command-line network graph visualization tool. It’s mostly used for
general purpose flowchart and tree diagrams rather than the less structured graphs that
Gephi’s known for. It also produces comparatively ugly results by default, though there
are options to pretty-up the fonts, line rendering, and drop shadows. Despite those
cosmetic drawbacks, GraphViz is still a very powerful tool for producing diagrams from
data. Its DOT file specification has been adopted as an interchange format by a lot of
programs, making it easy to plug into many tools, and it has sophisticated algorithms
for laying out even massive numbers of nodes.

34 | Chapter 9: Visualization

http://www.graphviz.org

Processing
Initially best known as a graphics programming language that was accessible to de-
signers, Processing has become a popular general-purpose tool for creating interactive
web visualizations. It has accumulated a rich ecosystem of libraries, examples, and
documentation, so you may well be able to find an existing template for the kind of
information display you need for your data.

Protovis
Protovis is a JavaScript framework packed full of ready-to-use visualization compo-
nents like bar and line graphs, force-directed layouts of networks, and other common
building blocks. It’s great as a high-level interface to a toolkit of existing visualization
templates, but compared to Processing, it’s not as easy to build completely new com-
ponents. Its developers have recently announced that Protovis will no longer be under

Protovis | 35

http://processing.org
http://vis.stanford.edu/protovis

active development, as they focus their efforts on the D3 library, which offers similar
functionality but in a style heavily influenced by the new generation of JavaScript
frameworks like jQuery.

Fusion Tables
Google has created an integrated online system that lets you store large amounts of
data in spreadsheet-like tables and gives you tools to process and visualize the infor-
mation. It’s particularly good at turning geographic data into compelling maps, with
the ability to upload your own custom KML outlines for areas like political constitu-
encies. There is also a full set of traditional graphing tools, as well as a wide variety of
options to perform calculations on your data. Fusion Tables is a powerful system, but
it’s definitely aimed at fairly technical users; the sheer variety of controls can be intim-
idating at first. If you’re looking for a flexible tool to make sense of large amounts of
data, it’s worth making the effort.

36 | Chapter 9: Visualization

http://mbostock.github.com/d3/
http://www.google.com/fusiontables/Home?pli=1

Tableau
Originally a traditional desktop application for drawing graphs and visualizations, Ta-
bleau has been adding a lot of support for online publishing and content creation. Its
embedded graphs have become very popular with news organizations on the Web,
illustrating a lot of stories. The support for geographic data isn’t as extensive as Fu-
sion’s, but Tableau is capable of creating some map styles that Google’s product can’t
produce. If you want the power user features of a desktop interface or are focused on
creating graphics for professional publication, Tableau is a good choice.

Tableau | 37

http://www.tableausoftware.com

38 | Chapter 9: Visualization

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 10

Acquisition

Most of the interesting public data sources are poorly structured, full of noise, and hard
to access. I probably spend more time turning messy source data into something usable
than I do on the rest of the data analysis processes combined, so I’m very thankful that
there are multiple tools emerging to help.

Google Refine
Google Refine is an update to the Freebase Gridworks tool for cleaning up large, messy
spreadsheets. It has been designed to make it easy to correct the most common errors
you’ll encounter in human-created datasets. For example, it’s easy to spot and correct
common problems like typos or inconsistencies in text values and to change cells from
one format to another. There’s also rich support for linking data by calling APIs with
the data contained in existing rows to augment the spreadsheet with information from
external sources.

Refine doesn’t let you do anything you can’t with other tools, but its power comes from
how well it supports a typical extract and transform workflow. It feels like a good step
up in abstraction, packaging processes that would typically take multiple steps in a
scripting language or spreadsheet package into single operations with sensible defaults.

Needlebase
Needlebase provides a point-and-click interface for extracting structured information
from web pages. As a user, you select elements on an example page that contain the
data you’re interested in, and the tool then uses the patterns you’ve defined to pull out
information from other pages on a site with a similar structure. For example, you might
want to extract product names and prices from a shopping site. With the tool, you
could find a single product page, select the product name and price, and then the same
elements would be pulled for every other page it crawled from the site. It relies on the

39

http://code.google.com/p/google-refine
http://www.needlebase.com

fact that most web pages are generated by combining templates with information re-
trieved from a database, and so have a very consistent structure.

Once you’ve gathered the data, it offers some features that are a bit like Google Refine’s
for de-duplicating and cleaning up the data. All in all, it’s a very powerful tool for
turning web content into structured information, with a very approachable interface.

ScraperWiki
ScraperWiki is a hosted environment for writing automated processes to scan public
websites and extract structured information from the pages they’ve published. It han-
dles all of the boilerplate code that you normally have to write to handle crawling
websites, gives you a simple online editor for your Ruby, Python, or PHP scripts, and
automatically runs your crawler as a background process. What I really like, though,
is the way that most of the scripts are published on the site, so new users have a lot of
existing examples to start with, and as websites change their structures, popular older
scrapers can be updated by the community.

40 | Chapter 10: Acquisition

http://scraperwiki.com

CHAPTER 11

Serialization

As you work on turning your data into something useful, it will have to pass between
various systems and probably be stored in files at various points. These operations all
require some kind of serialization, especially since different stages of your processing
are likely to require different languages and APIs. When you’re dealing with very large
numbers of records, the choices you make about how to represent and store them can
have a massive impact on your storage requirements and performance.

JSON
Though it’s well known to most web developers, JSON (JavaScript Object Notation)
has only recently emerged as a popular format for data processing. Its biggest advan-
tages are that it maps trivially to existing data structures in most languages and it has
a layout that’s restrictive enough to keep the parsing code and schema design simple,
but with enough flexibility to express most data in a fairly natural way. Its simplicity
does come with some costs, though, especially in storage size. If you’re representing a
list of objects mapping keys to values, the most intuitive way would be to use an indexed
array of associative arrays. This means that the string for each key is stored inside each
object, which involves a large number of duplicated strings when the number of unique
keys is small compared to the number of values. There are manual ways around this,
of course, especially as the textual representations usually compress well, but many of
the other serialization approaches I’ll talk about try to combine the flexibility of JSON
with a storage mechanism that’s more space efficient.

BSON
Originally created by the team behind MongoDB, and still used in its storage engine,
the BSON (Binary JSON) specification can represent any JSON object in a binary form.
Interestingly, the main design goal was not space efficiency, but speed of conversion.
A lot of parsing time can be saved during loading and saving by storing integers and
doubles in their native binary representations rather than as text strings. There’s also

41

http://www.json.org
http://www.bsonspec.org

native support for types that have no equivalent in JSON, like blobs of raw binary
information and dates.

Thrift
With Thrift, you predefine both the structure of your data objects and the interfaces
you’ll be using to interact with them. The system then generates code to serialize and
deserialize the data and stub functions that implement the entry points to your inter-
faces. It generates efficient code for a wide variety of languages, and under the hood
offers a lot of choices for the underlying data format without affecting the application
layer. It has proven to be a popular IDL (Interface Definition Language) for open source
infrastructure projects like Cassandra and HDFS. It can feel a bit overwhelming for
smaller teams working on lightweight projects, though. Much like statically-typed lan-
guages, using a predefined IDL requires investing some time up front in return for strong
documentation, future bug prevention, and performance gains. That makes the choice
very dependent on the expected lifetime and number of developers on your project.

Avro
A newer competitor to Thrift, and also under the Apache umbrella, Avro offers similar
functionality but with very different design tradeoffs. You still define a schema for your
data and the interfaces you’ll use, but instead of being held separately within each
program, the schema is transmitted alongside the data. That makes it possible to write
code that can handle arbitrary data structures, rather than only the types that were
known when the program was created. This flexibility does come at the cost of space
and performance efficiency when encoding and decoding the information. Avro sche-
mas are defined using JSON, which can feel a bit clunky compared to more domain-
specific IDLs, though there is experimental support for a more user-friendly format
known as Avro IDL.

Protocol Buffers
An open sourced version of the system that Google uses internally on most of its
projects, the Protocol Buffers stack is an IDL similar to Thrift. One difference is that
Thrift includes network client and server code in its generated stubs, whereas proto-
buf limits its scope to pure serialization and deserialization. The biggest differentiator
between the two projects is probably their developer base. Though the code is open
source, Google is the main contributor and driver for Protocol Buffers, whereas Thrift
is more of a classic crowd-sourced project. If your requirements skew towards stability
and strong documentation, Protocol Buffers is going to be attractive, whereas if you
need a more open, community-based approach, Thrift will be a lot more appealing.

42 | Chapter 11: Serialization

http://incubator.apache.org/thrift
http://avro.apache.org
http://avro.apache.org/docs/1.4.0/idl.html
http://code.google.com/p/protobuf

About the Author
A former Apple engineer, Pete Warden is the founder of OpenHeatMap, and he writes
on large-scale data processing and visualization.

www.allitebooks.com

http://www.allitebooks.org

	Table of Contents
	Preface
	Conventions Used in This Book
	Using Code Examples
	Safari® Books Online
	How to Contact Us

	Chapter 1. Terms
	Document-Oriented
	Key/Value Stores
	Horizontal or Vertical Scaling
	MapReduce
	Sharding

	Chapter 2. NoSQL Databases
	MongoDB
	CouchDB
	Cassandra
	Redis
	BigTable
	HBase
	Hypertable
	Voldemort
	Riak
	ZooKeeper

	Chapter 3. MapReduce
	Hadoop
	Hive
	Pig
	Cascading
	Cascalog
	mrjob
	Caffeine
	S4
	MapR
	Acunu
	Flume
	Kafka
	Azkaban
	Oozie
	Greenplum

	Chapter 4. Storage
	S3
	Hadoop Distributed File System

	Chapter 5. Servers
	EC2
	Google App Engine
	Elastic Beanstalk
	Heroku

	Chapter 6. Processing
	R
	Yahoo! Pipes
	Mechanical Turk
	Solr/Lucene
	ElasticSearch
	Datameer
	BigSheets
	Tinkerpop

	Chapter 7. NLP
	Natural Language Toolkit
	OpenNLP
	Boilerpipe
	OpenCalais

	Chapter 8. Machine Learning
	WEKA
	Mahout
	scikits.learn

	Chapter 9. Visualization
	Gephi
	GraphViz
	Processing
	Protovis
	Fusion Tables
	Tableau

	Chapter 10. Acquisition
	Google Refine
	Needlebase
	ScraperWiki

	Chapter 11. Serialization
	JSON
	BSON
	Thrift
	Avro
	Protocol Buffers

