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ABSTRACT

An application of orthogonal factorial design (OFD) to supplement
fault tree analysis (FTA) is presented. The combination of OFD and
FTA permits mathematical evaluation of relative contributions of
single events to system reliability. The approach permits detec-
tion of potential weaknesses in the design stage and determination
of the most effective means of optimization.

BACKGROUND

Fault tree analysis (FTA) is a systematic and logical procedure to
study and analyze complex systems for undesired events and their
causes. It has many applications for determining system
reliability and availability. Principles and computer codes for
FTA are well developed and easy to implement, and the analysis can
be extended to either the system or component level.

When used alone, however, FTA is confined to general information
about the system. This information wusually includes minimal
cutsets, availability, etc., when such codes as KITT or SUPKITT are
used. Results from such analysis have a high level of uncertainty
because of the subjectivity of the input data.

The input into fault tree quantitative analysis is failure rate

data on components or subsystems, and the top event, reliability or
availability, is evaluated based on this information.
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There are several problems related to using failure rate data.
First, all fault tree quantitative codes are based on the assump-
tion that the failure rate values are constant. Some components,
however, exhibit strong wearout phenomena. Also, failure rate data
for particular components are limited, so analysts must rely on the
subjective approach of using data for "similar components."  Some
data, such as data on operating chemical plants, are broadly
"lumped" together and much too general. Another problem is that
increasing failure rates due to environmental effects (i.e.,
temperature or humidity) may deteriorate component performance to
some unknown degree. System reliability also may be effected
dramatically through unidentified subsystem or component
interactions(!) (e.g., when an effect caused by a change in some
component state may change the effect of other components on the
total system performance). These "hidden" interactions cannot be
estimated through ordinary FTA. Because of these uncertainties,
output from the FTA cannot be used alone as a reliable design
basis. However, efforts can be made during the design stage to
reduce these uncertainties and to help in system optimization.

Design decisions can be made with less uncertainty and more objec-
tivity if mathematical relationships are established between
component or systems states and top events. Analyzing these
relationships will provide insight into system availability and
guide the designer in selecting remedies at minimum cost. Evalua-
tion based on mathematical relationships of the results will
identify components and subsystems that have maximum impact on
system or plant availability. Steps can then be taken to either
replace such components or modify the design with minimal cost
impact.

The following technique is suggested as a supplement to FTA to
allow establishment and evaluation of the mathematical relation-
ships between the top event and components. The relative impor-
tance of components is estimated using this technique, and such
"importance rank" becomes the criterion for the design rather than
absolute failure rates. This approach helps identify the most
critical components and provides a basis for design decisions
(i.e., where redundancy is needed, which portion of the design
needs improvement, etc.). Also, certain types of interactions
within the system are estimated along with their effects on system
availability. Only relative values of failure rates are needed for
the analysis, significantly reducing the uncertainties and enabling
the analyst to evaluate the system sensitivity within the broad
limits of subsystems/components failure rates.

PROPOSED METHODOLOGY
The proposed methodology is a combination of FTA with orthogonal

factorial design (OFD). Combining these two techniques enables an
analyst to benefit from using FTA, while overcoming its most
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significant drawback--lack of meaningful and formalized information
* about the relative contributions of components to total system
(plant) reliability.

This new approach modifies the computerized fault tree assumption
that component characteristics (such as failure probabilities)
remain unchanged over the life of the plant. Instead, this method
assumes that failures (or availability rates) for components in the
fault tree structure vary randomly with time over an established
range.

The input data necessary to obtain quantitative characteristics
from FTA are the component failure rates. Failure rates may be
constant or may vary with respect to phasing, in accordance with
some assumed distribution. Each change in the failure rate re-
quires a new computer run. Thus, the fault tree is evaluated in
many stages, resulting in probability characteristics that are
difficult to analyze. Each result will be evaluated for the given
"fixed" failure rate, and all other intermediate states of the
component still will be beyond the analysis.

As previously mentioned, the availability of a component may vary

under the effects of temperature, humidity, etc. Sources such as
IEEE, NERC, and other industry data banks for component failure
rates may be used for preliminary information. Use of the OFD

approach allows the introduction of component failure rate varia-
tions in the fault tree structure in a way that results in meaning-
ful analysis and conclusions.

OFD can be viewed as a series of experiments (in this case, comput-
er solutions to the fault tree quantification) in an effort to
develop a simplified prediction model of system availability
(similar to regression analysis). The series of experiments is
designed beforehand to--

® Minimize the number of trials
® Optimize model accuracy
e Provide detailed system/component relationships

Generally, each computer evaluation results in the system avail-
ability (response) based on a set of discrete failure rates for
each component (levels). For each fault tree quantification, the
levels of each variable are chosen according to OFD, to provide
independence in estimating the effects of each variable. The
resultant series of computer evaluations is a matrix of variable
levels with columns orthogonal to each other.

Mutual independence is the most important feature of this technique
because calculated regression coefficients for each variable
reflect the effect of only that variable on the system response.
Furthermore, the combination of the orthogonal vectors is designed
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to optimize input/output mathematical relationships by minimizing
- errors in the evaluation of single effects within the range of
values chosen for each variable. For example, in studying the
effects of a component with failure rates from -1 to +1 (coded
level for minimum failure rate to coded level for maximum failure
rate) on a system that is effected by a total of n components, the
(n+1)th-dimensional response surface that results from the analysis
reflects all possible effects of the component under study for all
combinations of other component failure rates. A typical orthogo-
nal matrix for five components is presented in Table 1.

APPLICATION OF OFD TO FTA

First, the plant or system fault tree is constructed and component
failure rates are compiled. Then wuncertainty bounds for the
collected failure rates are used to establish maximum and minimum
failure rates for each component (coded values of +1 and -1). If
uncertainty bounds are not readily available, then engineering
judgment can be used to establish them. These different levels of
failure rates are arranged in an orthogonal matrix (see Table 1).

Computer runs are performed to quantify the fault tree (failure
rates) using input data in accordance with the orthogonal matrix.
Analysis of the results of the fault tree quantification for the
top event failure probability, availability or unavailability Q(u)
is performed in orthogonal factorial analysis by first writing a
relationship between the components and the top event as a polyno-
mial with "n" variables.

= 2 2
Q(u) = Co + C1X4 +°"Cixi +...cnxn + CiiXi +...ijxj

i, Gl s +
C %, C12X1X2 + C, .X.X
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where:
The variables X;,...X.,...X represent the subsystems (com-

A kb
ponents) included in the FTR and are expressed numerically in
terms of failure rates in the normalized form.

X1X2,...X.X.,...X.X....Xn = interactions among subsystems
= <G (components) failures.
Co, Cl,...Cn; cll""cii"'cnn = coefficients of regression

for linear and quadratic
effects, respectively, or the
main effects according to the
established terminology.
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C12,...Ci.,...Ci....n = coefficient of regression for two or
J J more variable interaction effects.

When the number of components in the fault tree is large, the total
number of failure rate combinations becomes enormous. Without
representing results in the polynomial form (Equation 1) the study
tends to be complicated, and the results do not clearly reflect the
effect of individual components on system availability.

If the top event availability is evaluated under fixed conditions,
e.g., fixed component failure rate, this interpretation of the
results would lack flexibility and may lead to decisions that could
jeopardize plant safety or operation.

A simulation using OFD will give a simple form of an approximate
equation. If independence in the evaluation of the coefficient in
the equation is provided, the value of each coefficient will
reflect the actual effect of the corresponding variable (component
state): the larger the coefficient of a variable, the greater the
effect of this component.

Mathematically, this means all columns in the matrix of variables X
(F_) are mutually independent, or F_ is the orthogonal matrix. The
th8oretical aspects ?§ ;ynstructiﬁ% the orthogonal matrices were
developed by Addelman® ’ 7.

The main concepts are as follows: If the regression coefficients
are considered as a vector of unknown parameters

(2)

and system failure rate or unavailability as a response vector

Qo (u)

Q1 (u)
1Qz2(w)

Q(u) = |.

(3)

én(u)
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then the coefficients "C," according to the general rule of matrix
algebra, are estimated as:

s it - i
C=(FF) *'FQo) (4)
where:

Fx is n by m matrix of independent variables "X" in normalized
form:

£4 (X11,---,Xm1),-~-fk(X12---,Xm1)
fl (X12’---,Xm12))--'fk(X12a"°’Xm2)

Bl sl S e (5)

f1 (Xlny'",an))'"fk(XIH)'-'yxmn)

where:

fk(xln,...,x ) = ¥.1ue of the kEE function of variables on
n— point of the matrix "F"

number of variables

number of lines in matrix F

transposed matrix of Fx.

= =]
I n

Construction of the matrix F_ is the most critical part of the
analysis because the type and size of this matrix define the
accuracy of the model and number of runs required.

The orthogonality con@ﬂtion is met through the requirement of the
matrix that moments F_F_ be diagonal. Currently, the procedures
for designing orthogon%lxmatrices with minimal number of lines (in
our case, with minimal number of computer runs for evaluation of
the top event unavailability) are well developed (2,3,%4)). For the
analyst familiar with this technique, the design of the most
economical and efficient matrix for each particular case presents

no special problems. The number of variables used has no limit.
Also, the orthogonal design allows simplification of the general
expression for evaluation of the coefficients. Instead, the

following relationships are used:
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for single variables:

N
2Ry oy
C. = u=1 ( 1) (6)
3l N 2
2 f (x.
u=1 ( 1)

for interactions:

N
Comse DG XG TS XY 00
Bt = (7)
1] n - } 2
ST e i E e ey,
= ( Hiane Y n)

where:

Q(u) = value of the system availability at the combination
""Y" corresponding to the u— point of the matrix FX.

Any computer code that is generally used for quantitative evalua-
tion of system availability (e.g., KITT) may be used to estimate
the numerical values of Q(u). The code must be run a limited
number of times, equal to the number of lines "n" in the matrix F
and conditions for each run are defined by the combination of "x
in the matrix Fx.

The subsequent analysis of results is straightforward: the value
of C. for any single variable reflects the quantitative effect of
the corresponding component or subsystem on total availability.
The higher the value of C., the greater the effect of the component
state on Q(u) and, therefore, stronger requirements of the quality
of this component and more accurate data for failure rates must be
used. The same is applied to the analysis of the interactioms.
Significant values for the coefficients C..... is evidence that
there is a presence of interactions betweéﬁlcoﬁbonents R I
and design decisions should be focused on the reduction of the
effect of these interactions, probably through redundancy.

The relative sum of the coefficient of these interactions

N
i ) [F (Xij""n)] (8)
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may serve as a useful criterion of system or plant effectiveness,
especially for discriminatory decisions among alternative designs.

Example

The example used to illustrate this application of factorial
analysis is taken from a system interaction study performed for
Teollisuuden Voima Oy (TVO), Finland, on the fuel pool cooling and
fuel pool purification systems of their KPA-Store (independent
spent fuel facility).

The physical situation is that spent nuclear fuel rods (assemblies)
will be stored underwater in vertical racks in a series of stain-
less steel-lined pools (Figure 1). The purpose of the facility is
to maintain control over the fuel and any radioactive material
associated with them until after the nuclear power plant has ceased
operation and an ultimate final high level waste respository is
ready (approximately 60 years).

In exercising control, the primary process operation is the removal
from the fuel assemblies of decay heat which is created by the
fission products. The water pools accomplish this function in
conjunction with redundant closed and open cycle cooling circuits.
As long as decay heat is removed, the fuel is in a safe, stable
configuration. If heat cannot be removed, the fuel eventually will
overheat, and, at increasingly high temperatures, the zirconium
cladding will oxidize and could fail, the fuel pellets will release
the fission products from the metallic matrix, and the physical
configuration could change. Zirconium oxidation can result from
steam at high temperatures. This reaction produces hydrogen, and,
being exothermic, the temperature rises faster. Thus, the removal
of decay heat is an important safety function.

The other process operation is the removal of radioactive materi-
als, released from the fuel assemblies, that get into the water.
These radioactive atoms initially may have been inside the fuel
pellet uranium dioxide matrix, then may have diffused out through
pellet grain boundaries and escaped into the water from the zirco-
nium tube through minute leak pathways, or the radioactive atoms
could have been adhered to the outside of the assembly, due to
material impurities din the reactor coolant water, and become
irradiated during reactor operation. These radioactive atoms are
removed from the fuel pool cooling water by the filtration and ion
exchange operations. Figure 2 shows the schematic of these cooling
and purification operations.

For the example application of orthogonal factorial analysis, a
simplified fault tree was developed. The complete fault tree
includes all mechanisms by which the top event could occur. For
instance, loss of fuel cooling could be the top event and it would
involve loss of water from the pool, loss of ventilation, loss of
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physical geometry, etc. In this example, the loss of pool cooling
water is shown as the failure mode for the heat removal function.
Because of the interconnection of open systems to the closed loop
cooling and purification systems, and because of the cross tying of
the redundant cooling loop systems by the common purification
system, this was anticipated to have the greatest probability for
mixup and for interaction. Figure 3 shows the simplified fault
iEree i

Once the fault tree is constructed, the elements are coded. The
failure rates, if known, are then assigned. For this example, the
top event is failure of the fuel pool cooling. This is caused by
the simultaneous failure of the make-up water supply and the loss
of inventory of the closed loop cooling water. Make-up is provided
automatically by 1level controllers from a demineralized water
system. In order to simplify the example, the various failures of
the addition of make-up water to the balancing tank (i.e., the
level control instrument and the automatic block control valve)
were considered, but the demineralized water system was considered
a single element.

Some of the failure rates were given constant values. (The failure
of the demineralized water make-up system was set at 3.72 x 107%.)
Those components that have a range of failure rates (due to
uncertainty, selection of particular component, etc.) are given a
variable term. The range for the variable is set in this example
from 1073 to 107® with the average being 107%-5,

Five components, designated as X;, X, X3, X4, and X5, were ana-
lyzed for their effects on the system availability Q and mutual
interactions. For these components, failure rates were varied
within the interval 107® to 1073. Other components included in the
fault tree were assumed to have constant failure rates shown on the
tree.

Sixteen computer runs were performed for evaluation of system
availability. Conditions for each run were in accordance with the
orthogonal matrix shown in Table 1. 1In this table, values -1 and
+1 are used for failure rates 10™® (lower bound) and 1073 (upper
bound), respectively, as adopted for standard orthogomal matrices.

The following model for availability Q is developed using expres-
sions (6) and (7) to calculate the coefficients:

Qx 105 =8.83 - 8.82 X3 - 4.39 X, - 4.39 X; -
0.638 X4 - 0.638 X5 + 4.38 X; X, + (8)
4.38 X X3 + 0.63 X; X4 + 0.639 X1X5

X4 . X5 = coded failure rates for components X; through Xg
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The following relationship exists between coded and actual failure
rates values:

e Upper (Lower) BZ;nd - Yo (9)

where:

mid-value between upper and lower failure rates bounds
= the difference between upper or lower bound and
mid-value.

Xo

>
=
|

The analysis of this equation shows that the event X,; has the
greatest effect on system availability and X4 and Xgs have the
smallest. This means that components responsible for the event X;
must be selected carefully. Values X4, and X5, by contrast, are
allowed to have more uncertainty in failure rate variation, and are
probably less costly.

The most significant interactions are between X; and X5, and X; and
Xg. Failure of any of them will effect the total availability as a
common mode failure. Additional redundancy may be recommended in
this part of design or more reliable components must be used.

CONCLUSION

The proposed technique, based on a combination of FTA and OFD
analysis, can be applied effectively to identify, rank, and evalu-
ate component importance and possible component interactions within
the system. The method is expected to be especially useful in
comparing alternate system designs and detecting potential weak-
nesses. In contrast to FTA, only relative failure rates are
required for quantitative analysis.

Because the orthogonal matrices allow a high level of standardiza-
tion, the method is reproducible, flexible, and easy to implement.
It also provides a powerful analytical means for:

® Revealing which components contribute most to system
availability.
® Comparing the relative importance of single system or

component failures.

® Comparing design alternatives for wupgrading system
availability in a cost-effective manner.

Once constructed for a system, the orthogonal matrix may be applied
to different systems and designs, thus providing a high level of
standardization and reproducibility.

10
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TABLE 1

ORTHOGONAL MATRIX

Computer Component Failure Rate
Run n = X Xz X3 X Xs
1 el +1 1 +1 1
2 -+l chil +1 =i =it
5) Rl +1 = &l =
4 il i =1 = i)
5 = -1 1 +1 =l
6 +1 RE 1 =1 +1
7 +1 =i =l +il i
8 il =il = = =1l
9 =1 +1 +1 +1 =1
10 =1 +1 hil = +1
1t =1 +i] =l +il Sl
12 =1 +1 =il =i il
13 =1 =i +1 +1 &l
14 =1 = +1 =i =il
15 =1 =1 =i +1 =4
16 =i | = =l =il il
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